
N e v e r  s t o p  t h i n k i n g .

User ’s Manual ,  V 1.2,  Jan. 2001

TriLib
A DSP Library for  Tr iCoreTM

IP Cores



 

Edition 2000-01

Published by 
Infineon Technologies AG 
81726 München, Germany 

© Infineon Technologies AG 2006. 
All Rights Reserved. 

LEGAL DISCLAIMER 
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE 
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE 
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR 
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION 
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON 
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND 
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL 
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN 
IN THIS APPLICATION NOTE. 

Information 
For further information on technology, delivery terms and conditions and prices please contact your nearest 
Infineon Technologies Office (www.infineon.com). 

Warnings 

Due to technical requirements components may contain dangerous substances. For information on the types 
in question please contact your nearest Infineon Technologies Office. 
Infineon Technologies Components may only be used in life-support devices or systems with the express 
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to 
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or 
system. Life support devices or systems are intended to be implanted in the human body, or to support 
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health 
of the user or other persons may be endangered. 

 

 



 
 

User ’s Manual ,  V 1.1,  Sept. 2000

N e v e r  s t o p  t h i n k i n g .

Tr iL ib
A DSP Library for  Tr iCore TM



TriLib
 
Revision History: 2000-01    V 1.2

Previous Version: -                                                                                                          V 1.1

Page Subjects (major changes since last revision)

New functions (Mathematical, Statistical, FFT)

Current Version               -                                                                                                                 V 1.2

All the functions are ported to GNU Compiler

New functions                                                                                                              
(Random number, Mixed Adaptive, Mixed FFT, Multirate FIR)

Page 407 Applications

GUI on the host side to provide the visual control for two embedded target 
applications

Page 425 FAQs

Page 435 Appendix

Page 459 Glossary

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
trilib-support@infineon.com



"Microcontrollers" Template
for Technical Documentation

 

1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
1.1 Introduction to TriLib, a DSP Library for TriCore . . . . . . . . . . . . . . . . . . . .  15
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
1.3 Future of the TriLib  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
1.4 Support Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

2 Installation and Build  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
2.1 TriLib Content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
2.2 Installing TriLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
2.3 Building TriLib  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
2.4 Source Files List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

3 DSP Library Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
3.1 TriLib Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
3.2 Calling a DSP Library Function from C Code  . . . . . . . . . . . . . . . . . . . . . .  23
3.3 Calling a DSP Library Function from Assembly Code . . . . . . . . . . . . . . . .  23
3.4 TriLib Example Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
3.5 TriLib Implementation - A Technical Note  . . . . . . . . . . . . . . . . . . . . . . . . .  24

4 Function Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
4.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
4.2 Complex Arithmetic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Addition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Multiplication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Conjugate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Magnitude  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Shift  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

4.3 Vector Arithmetic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85
4.4 FIR Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
4.5 IIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173
4.6 Adaptive Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
4.7 Fast Fourier Transforms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
4.8 TriCore Implementation Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248

First Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
Butterfly Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251
Method adapted in the TriLib FFT implementation  . . . . . . . . . . . . .  254
Group Loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
Stage Loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
Important Note:  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259

4.9 Discrete Cosine Transform (DCT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309
4.10 Inverse Discrete Cosine Transform (IDCT) . . . . . . . . . . . . . . . . . . . . . . .  314
User’s Manual 5 V 1.1, 2000-01



"Microcontrollers" Template
for Technical Documentation

 

4.11 Multidimensional DCT (General Information)  . . . . . . . . . . . . . . . . . . . . .  315
4.12 Mathematical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329
4.13 Matrix Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  363
4.14 Statistical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  379

5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  401
5.1 Spectrum Analyzer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  401

A simple example showing functioning of Spectrum Analyzer. . . . .  401
5.2 Sweep Oscillator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404
5.3 Equalizer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  406
5.4 Hardware Setup for Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  408

6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  417

7 Frequently Asked Questions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  419
7.1 FIR Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  419

Linear Phase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  420
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  421
Numeric Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  422

7.2 IIR Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424
7.3 FFT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  425

8 Appendix  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429
8.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429
8.2 File Organization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  430
8.3 Coding Rules and Conventions for ’C’ and ’C++’ . . . . . . . . . . . . . . . . . . .  433
8.4 Coding Rules and Conventions for Assembly Language  . . . . . . . . . . . .  436
8.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  444
8.6 Compiler Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  445

9 Glossary   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  453
User’s Manual 6 V 1.1, 2000-01



"Microcontrollers" Template
for Technical Documentation

 

Table 2-1 Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Table 2-2 Source files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Table 3-1 TriLib Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Table 3-2 FIR Filter Implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
Table 3-3 Compiler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
Table 3-4 Tasking Special Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
Table 3-5 GHS Special Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Table 3-6 Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Table 3-7 DSPEXT CCD Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Table 4-1 Argument Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Table 4-2 Register Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Table 4-3 Complex Data Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Table 8-1 Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  430
Table 8-2 Equal Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  445
Table 8-3 Directives with the same functionality but different syntax. . . . . . . . .  446
Table 8-4 Datatypes with DSPEXT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  446
Table 8-5 Datatypes without DSPEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  447
User’s Manual 7 V 1.1, 2000-01



"Microcontrollers" Template
for Technical Documentation

 

User’s Manual 8 V 1.1, 2000-01



 

Preface

This is the User Manual for TriLib-a DSP library for TriCore. TriCore is the first single-
core 32-bit microcontroller-DSP architecture optimized for real-time embedded systems.
The DSP core of TriCore is a fixed point one. 

This manual describes the implementation of essential algorithms for general digital
signal processing applications on the TriCore DSP. Characteristics of TriLib and the
Installation and Build procedure are also described.

The source codes are C as well as C++ -callable and thus this library can be used as a
library of basic functions for developing bigger applications on TriCore. The library
serves as a user guide for TriCore programmers. It demonstrates how the processor’s
architecture can be exploited for achieving high performance. There are number of ways
to implement an algorithm. The algorithms have been implemented with the primary aim
of optimizing execution speed, i.e., minimize number of execution cycles.

The various functions and algorithms implemented and described about in the user
manual are:

• Complex Arithmetic Functions
• Vector Arithmetic Functions
• Filters
– FIR
– IIR
– Adaptive FIR
• Transforms
– FFT
– DCT
• Mathematical Functions
• Matrix Operations
• Statistical Functions

The user manual describes each function in detail under the following heads:

Signature:

This gives the function interface.

Inputs:

Lists the inputs to the function.
User’s Manual -9 V 1.2, 2000-01



 

Outputs:

Lists the output of the function.

Return:

Gives the return value of the function if any.

Description:

Gives a brief note on the implementation, the size of the inputs and the outputs,
alignment requirements etc.

Pseudocode:

The implementation is expressed as a pseudocode using C conventions.

Techniques:

The techniques employed for optimization are listed here.

Assumptions:

Lists the assumptions made for an optimal implementation such as constraint on buffer
size. The input output formats are also given here.

Memory Note:

A detailed sketch showing how the arrays are stored in memory, the nature of the buffers
(linear/circular), the alignment requirements of the different buffers, the nature of the
arithmetic performed on them (packed, simple). The diagrams give a great insight into
the actual implementation.

Implementation Note:

Gives a very detailed note on the implementation. The codes in TriLib are optimized for
speed. An optimized code is not very easy to understand. The implementation note is
very helpful in overcoming this hurdle. For example, how techniques such as loop
unrolling (if employed) help in optimization is described in detail.

Further, the path of an Example calling program, the Cycle Count and Code Size are
given for each function.
User’s Manual -10 V 1.2, 2000-01



 

Organization

Chapter 1, Introduction, gives a brief introduction of the TriLib and its features.

Chapter 2, Installation and Build, describes the TriLib content, how to install and build
the TriLib.

Chapter 3, DSP Library Notations, describes the DSP Library data types, arguments,
calling a function from the C code and the assembly code, and the implementation notes.

Chapter 4, Function Descriptions, describes the Complex arithmetic functions, Vector
arithmetic functions, FIR filters, IIR filters, Adaptive filters, Fast Fourier Transforms,
Discrete Cosine Transform, Mathematical functions, Matrix operations and Statistical
functions. Each function is described with its signature, inputs, outputs, return, brief
description, pseudocode, techniques used, assumptions made, memory note,
implementation details, example, cycle count and code size.

Chapter 5, Applications, describes the applications such as Spectrum Analyzer, Sweep
Oscillator and Equalizer using implemented TriLib functions.

Chapter 6, References, gives the list of related references.

Chapter 7, FAQs, gives Frequently Asked Questions about FIR, IIR and FFT.

Chapter 8, Appendix, gives the conventions for C and assembly code, file naming
conventions, directory structure and porting for the Tasking, GHS and GNU compilers. 

Chapter 9, Glossary, gives a brief explanation of the terminology used in the TriLib user
manual in alphabetical order.

What’s new?

• New functions have been added
• All functions are now supported on GNU compiler also
• Three Applications showing the use of functions from TriLib are added 
User’s Manual -11 V 1.2, 2000-01



 

• A powerful GUI on the host side is added to provide visual control to the embedded
target application

• FAQs, Appendix and Glossary are added
• The GHS and Tasking compiler now have an extra implementation for C and C++

respectively thereby to give flexibility to the user to use anyone for their convenience
• TriLib Classes for the much bigger TriApp foundation classes called as TFC (TriCore

application foundation classes) to enable developers to scale up their signal
processing applications

Acknowledgements

The technical substance of this manual has been mainly developed by the Infineon’s
TriLib development team. These are designed, developed and tested over the hardware.
We in advance would like to acknowledge users for their feedback and suggestions to
improve this product. The development team would like to thank Dieter Stengl, Director
for CMD TO S/W for all his support and encouragement. Rakesh Verma, Technical
Manager, Wipro, for his support to the Wipro’s development team and co-ordination with
the Infineon team. Thomas Varghese, Arun Naik, Sreenivas, Mahesh for their valuable
contribution in giving the feedback on user manual and active participation in some of
the code reviews and also for their technical support. The team also recognizes the effort
of Savitha for her patience in meticulously preparing, typesetting and reviewing the User
Manual. We also would like to thank our marketing team for their comments and inputs.

Mark Nuchimowicz, Ramachandra, Rashmi, Preethi, Manoj, Ankur and Nagaraj

TriLib Development team - Infineon

Acronyms and Definitions

Acronyms and Definitions

Acronyms  Definitions

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DIF Decimation-In-Frequency

DIT Decimation-In-Time

DLMS Delayed Least Mean Square

DSP Digital Signal Processing
User’s Manual -12 V 1.2, 2000-01



 

Documentation/Symbol Conventions

The following is the list of documentation/symbol conventions used in this manual.

TriLib DSP Library functions for TriCore

FFT Fast Fourier Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

Documentation/Symbol Conventions

Documentation/
Symbol convention

 Description

Courier Pseudocode

( * ) Denotes Q format multiplication

Times-italic File name

Pointer

Circular pointer

Acronyms and Definitions

Acronyms  Definitions
User’s Manual -13 V 1.2, 2000-01



 

User’s Manual -14 V 1.2, 2000-01



 Introduction
1 Introduction

1.1 Introduction to TriLib, a DSP Library for TriCore

The TriLib, a DSP Library for TriCore is C-callable, hand-coded assembly, general
purpose signal processing routines. These routines are extensively used in real-time
applications where speed is critical.

The TriLib includes more than 60 commonly used DSP routines. The throughput of the
system using the TriLib routines is considerably better than those achieved using the
equivalent code written in ANSI C language. The TriLib significantly helps in
understanding the general purpose signal processing routines, its implementation on
TriCore. It also reduces the DSP application development time. The TriLib also provides
the source code. Few applications are also provided as part of TriLib to demonstrate the
usage of functions.

The routines are broadly classified into the following functional categories:

• Complex Arithmetic
• Vector Arithmetic
• FIR Filters
• IIR Filters
• Adaptive Filters
• Fast Fourier Transforms
• Discrete Cosine Transform
• Mathematical functions
• Matrix operations
• Statistical functions

1.2 Features

• Covers the common DSP algorithms with Source codes
• Hand-coded and optimized assembly modules
• C/C++ callable functions on Tasking, GreenHills and GNU compilers
• Multi platform support - Win 95, Win 98, Win NT
• Bit-exact reference C codes for easy understanding and verification of the algorithms
• Assembly implementation tested for bit exactness against model C codes
• Workarounds implemented to take care of known Core errors
• Examples to demonstrate the usage of functions
• Example input test vectors and the output test data for verification
User’s Manual 1-15 V 1.2, 2000-01



 Introduction
• Comprehensive Users manual covering many aspects of implementation
• Useful Applications built using the TriLib to demonstrate the product
• Powerful User friendly GUI interface for applications built using TriLib
• TriApp-TriLib application foundation class for extending the TriLib functionality
• Supports the Object Oriented application development in C++ and Java
• User helpful Demoshield based setup and registration program

1.3 Future of the TriLib

The planned future releases will have the following improvements.

• Expansion of the library by adding more number of functions in the domains such as
image processing, speech processing and the generic core routines of DSP.

• Upgrading the existing 16 bit functions to 32 bit

1.4 Support Information

Any suggestions for improvement, bug report if any, can be sent via e-mail to 

trilib-support@infineon.com.

Visit www.infineon.com for update on TriLib releases.
User’s Manual 1-16 V 1.2, 2000-01



 Installation and Build
2 Installation and Build

2.1 TriLib Content

The following table depicts the TriLib content with its directory structure.

Table 2-1 Directory Structure

Directory 
name

Contents Files

TriLib Directories which has all the files related 
to the TriLib

None

source Directories Tasking, GreenHills and 
GNU

None

Tasking Individual directories for each functional 
category. Each directory has respective 
assembly language implementation files 
of the library functions

*.asm

GreenHills Individual directories for each functional 
category. Each directory has respective 
assembly language implementation files 
of the library functions

*.tri

GNU Individual directories for each functional 
category. Each directory has respective 
assembly language implementation files 
of the library functions

*.S

include Directories Tasking, GreenHills and 
GNU and common include file for ’C’ of 
all the three compilers

TriLib.h

Tasking Include files for assembly routine *.inc for assembly

GreenHills Include files for assembly routine *.h for assembly

GNU Include files for assembly routine *.h for assembly

docs User Manual
Convention Manual
readme.txt 

*.fm, *.pdf
*.doc
*.txt

examples Directories Tasking and GreenHills None
User’s Manual 2-17 V 1.2, 2000-01



 Installation and Build
2.2 Installing TriLib

TriLib is distributed as a self extracting ZIP file. To install the TriLib on the system, unzip
the ZIP file and run setup. This will install all the files in the respective directories. 

The directory structure is as given in “TriLib Content” on Page 17

2.3 Building TriLib

Include the TriLib.h into your project and also include the same into the files that need to
call the library function like:

#include “TriLib.h”

Set the include path in the tool that you are using for both the project as well as each of
the files you have included (it is observed that sometimes you get errors if it is not set in
the options of each individual files). Please refer the documentation of the Tasking,
GreenHills and GNU for more details. 

Tasking Individual directories for each functional 
category. Each directory has respective 
example ‘c’ and ’cpp’ functions to depict 
the usage of TriLib

*.c, *.cpp

GreenHills Individual directories for each functional 
category. Each directory has respective 
example ‘cpp’ and ’c’ functions to depict 
the usage of TriLib

*.cpp, *.c

GNU Individual directories for each functional 
category. Each directory has respective 
example ‘c’ functions to depict the usage 
of TriLib

*.c

refcode Individual directories for each functional 
category. Each directory has respective 
reference ‘C’ code of the corresponding 
assembly implementation in source 
directory, which works on Tasking 
compiler

None

build Build information *.pjt, *.bld

testvectors Test vectors for the different functions in 
their respective directories

*.dat

Table 2-1 Directory Structure
User’s Manual 2-18 V 1.2, 2000-01



 Installation and Build
In case of Tasking, the #define part for _TASKING selection box should be checked and
in case of GreenHills it should be typed manually as _GHS, otherwise it might give lot of
compiler errors.

In both the compilers the DSPEXT has to be defined in the project options for both the
assembly sources and the c files in the respective project options when the DSP
extension for respective compilers (Tasking and GreenHills) have to be used.

For without DSP extension don’t define DSPEXT for c compiler option. For assembler
option set DSPEXT=0. GNU compiler doesn’t support data types for DSP. So DSPEXT
need not be defined or undefined in case of GNU compiler.

If the .cpp file is to be used, in case of Tasking or GreenHills compiler, the macro
_cplusplus is to be defined under compiler options. 

For setting the other CCD, such as H/W workarounds, use the assembler options. 

Now include the respective source files for the required functionality into your project.
Refer the functionality table, Table 2-2 

Build the system and start using the library. 

2.4 Source Files List

Table 2-2 Source files

Tasking GreenHills GNU

Complex Arithmetic functions

CplxOp_16.asm
CplxOp_32.asm  

CplxOp_16.tri 
CplxOp_32.tri 

CplxOp_16.S 
CplxPhMag_16.S
CplxOp_32.S 
CplxPhMag_32.S

Vector Arithmetic functions

VectOp_16.asm VectOp_16.tri 
VectOp1_16.tri

VectOp_16.S 
VectOp1_16.S

FIR filters

Fir_16.asm
FirBlk_16.asm
Fir_4_16.asm
FirBlk_4_16.asm

Fir_16.tri
FirBlk_16.tri
Fir_4_16.tri
FirBlk_4_16.tri

Fir_16.S
FirBlk_16.S
Fir_4_16.S
FirBlk_4_16.S
User’s Manual 2-19 V 1.2, 2000-01



 Installation and Build
FirSym_16.asm
FirSymBlk_16.asm
FirSym_4_16.asm
FirSymBlk_4_16.asm
FirDec_16.asm
FirInter_16.asm

FirSym_16.tri
FirSymBlk_16.tri
FirSym_4_16.tri
FirSymBlk_4_16.tri
FirDec_16.tri
FirInter_16.tri

FirSym_16.S
FirSymBlk_16.S
FirSym_4_16.S
FirSymBlk_4_16.S
FirDec_16.S
FirInter_16.S

IIR filters

IirBiq_4_16.asm
IirBiqBlk_4_16.asm
IirBiq_5_16.asm
IirBiqBlk_5_16.asm

IirBiq_4_16.tri
IirBiqBlk_4_16.tri
IirBiq_5_16.tri
IirBiqBlk_5_16.tri

IirBiq_4_16.S
IirBiqBlk_4_16.S
IirBiq_5_16.S
IirBiqBlk_5_16.S

Adaptive filters

Dlms_4_16.asm
DlmsBlk_4_16.asm
CplxDlms_4_16.asm
CplxDlmsBlk_4_16.asm
Dlms_2_16x32.asm
DlmsBlk_2_16x32.asm

Dlms_4_16.tri
DlmsBlk_4_16.tri
CplxDlms_4_16.tri
CplxDlmsBlk_4_16.tri
Dlms_2_16x32.tri
DlmsBlk_2_16x32.tri

Dlms_4_16.S
DlmsBlk_4_16.S
CplxDlms_4_16.S
CplxDlmsBlk_4_16.S
Dlms_2_16x32.S
DlmsBlk_2_16x32.S

FFT

FFT_2_16.asm
FFT_2_32.asm
FFT_2_16X32.asm

FFT_2_16.tri
FFT_2_32.tri
FFT_2_16X32.tri

FFT_2_16.S
FFT_2_32.S
FFT_2_16X32.S

DCT

DCT_2_8.asm DCT_2_8.tri DCT_2_8.S

Mathematical Functions

Sine_32.asm
Cos_32.asm
Arctan_32.asm
Sqrt_32.asm
Ln_32.asm
AntiLn_16.asm
Expn_16.asm
XpowY_32.asm
RandInit_16.asm
Rand_16.asm

Sine_32.tri
Cos_32.tri
Arctan_32.tri
Sqrt_32.tri
Ln_32.tri
AntiLn_16.tri
Expn_16.tri
XpowY_32.tri
RandInit_16.tri
Rand_16.tri

Sine_32.S
Cos_32.S
Arctan_32.S
Sqrt_32.S
Ln_32.S
AntiLn_16.S
Expn_16.S
XpowY_32.S
RandInit_16.S
Rand_16.S

Matrix Functions

Table 2-2 Source files
User’s Manual 2-20 V 1.2, 2000-01



 Installation and Build
MatAdd_16.asm
MatSub_16.asm
MatMult_16.asm
MatTrans_16.asm

MatAdd_16.tri
MatSub_16.tri
MatMult_16.tri
MatTrans_16.tri

MatAdd_16.S
MatSub_16.S
MatMult_16.S
MatTrans_16.S

Statistical Functions

ACorr_16.asm
Conv_16.asm
Avg_16.asm

ACorr_16.tri
Conv_16.tri
Avg_16.tri

ACorr_16.S
Conv_16.S
Avg_16.S

Table 2-2 Source files
User’s Manual 2-21 V 1.2, 2000-01



 Installation and Build
User’s Manual 2-22 V 1.2, 2000-01



 DSP Library Notations
3 DSP Library Notations

3.1 TriLib Data Types

The TriLib handles the following fractional data types.

3.2 Calling a DSP Library Function from C Code

After installing the TriLib, do the following to include a TriLib function in the source code.

1. Include the TriLib.h include file 
2. Include the source file that contains required DSP function into the project along with

the other source files
3. Include TriConv.inc (Tasking) or TriConv.h (GreenHills)
4. Set the include paths to point the location of the TriLib.h 
5. Set the Compiler Conditional Directives (CCDs) for selection of DSP extension 
6. Set the Compiler Conditional Directives (CCDs) to generate code with workarounds

for the H/W bugs
7. Build the system

3.3 Calling a DSP Library Function from Assembly Code

The TriLib functions are written to be used from C. Calling the functions from assembly
language source code is possible as long as the calling function conforms to the TriCore
calling conventions. Refer TriCore Calling Conventions manual for more details.

3.4 TriLib Example Implementation

The examples of how to use the TriLib functions are implemented and are placed in
examples subdirectory. This subdirectory contains a subdirectory for set of functions.

Table 3-1 TriLib Data Types

1Q15 (DataS) 1Q15 operand is represented by a short data type (frac16/_sfract) that 
is predefined as DataS in TriLib.h header file.

1Q31 (DataL) 1Q31 operand is represented by a long data type (frac32/_fract) that is 
predefined as DataL in TriLib.h header file.

CplxS Complex data type contains the two 1Q15 data arranged in Re-Im 
format.

CplxL Complex data type contains the two 1Q31 data arranged in Re-Im 
format.
User’s Manual 3-23 V 1.2, 2000-01



 DSP Library Notations
3.5 TriLib Implementation - A Technical Note

3.5.1 Memory Issues 

The TriLib is implemented with the known alignment constraints for the TriCore memory
addressing architecture. The following information gives the alignment and sizes
conditions in order to work properly.

Halfword alignment for ld.d and st.d is only allowed when the source or destination
address is located in on-chip memory. For external memory accesses over TriCore’s
peripherals bus, doubleword access must be word aligned (TriCore Architecture Manual
p.13).

The size and length of a circular buffer have the following restrictions (TriCore
Architecture Manual p.13).

• The start of the buffer start must be aligned to a 64-bit boundary.
• The length of the buffer must be a multiple of the data size, where the data size is

determined from the instruction being used to access the buffer.

Different alignment requirements for ld.d and st.d for internal and external memories
impose different alignment of data in functions that use those instructions. In some cases
(for example filter delay-buffer defined as circular-buffer) halfword aligned accesses to
the data is required which prohibit the location of such data structures in external
memory.

For example Fir_4_16() function, the delay-buffer of the filter is defined as circular-buffer.

In this case, when located in internal memory the buffer must have doubleword
alignment (circular-buffer). After each call to the function the start position of the delay-
buffer is shifted (with circular update) by halfword. The delay-buffer cannot be located in
external memory because the load from the delay-buffer is executed by ld.d instruction
and word alignment is no more satisfied.

3.5.2 Optimization Approach

Extended parallelism of the processor architecture increases the speed of the algorithms
execution, but at the same time imposes some constraints on the size of Input-Buffers.
So for example Fir_4_16() FIR filter executes at maximal possible speed on the TriCore
but the size must be multiple of 4.

In the implementation of the algorithms following optimizations are applied:

• Packed arithmetic
User’s Manual 3-24 V 1.2, 2000-01



 DSP Library Notations
• Mixed packed /simple arithmetic
• Simple arithmetic

From the point of view of size of the algorithm (Vector length, Filter length) two cases can
be identified:

• Constraint on the dimension of vector, order of filter 
• Arbitrary size

Best performance can be achieved with some constrains on the size in which case fully
packed arithmetic is used in the kernel loop. Arbitrary size (not for all algorithms) can be
achieved by using 

• Simple arithmetic in the kernel loop 
• Mixed packed/simple arithmetic, partitioning of the algorithm size so that the kernel

loop uses packed arithmetic with conditional post processing to achieve arbitrary size

To achieve maximal performance and flexibility some functions have several
implementations optimized for specific target requirements.

Following implementations can be recognized:

•  On sample, optimized for single sample processing
•  On block, optimized for block processing
•  Best performance with restriction on size 
•  Arbitrary size, trade-off between performance and flexibility

For example FIR filter is implemented as

The SIMD instructions are exploited in the FFT by the special arrangement of the Real
and Imaginary parts of the complex number. The Real:Imag format is the conventional
method of storing the complex number x+jy. In this case two complex numbers x0+jy0
and x1+jy1 is arranged as x0x1 and j(y0y1).

Table 3-2 FIR Filter Implementations

Fir_16() Sample processing, trade-off on performance, arbitrary size

Fir_4_16() Sample processing, best performance, size restriction

FirBlk_16() Block processing, trade-off on performance, arbitrary size

FirBlk_4_16() Block processing, best performance, size restriction
User’s Manual 3-25 V 1.2, 2000-01



 DSP Library Notations
3.5.3 Options in Library Configurations

Set of Conditional Compile Directives (CCD) on the C language level and assembly level
define the configuration of the TriLib.

3.5.3.1  Compiler 

Compiler selection is based on two CCD

In the current implementation of the TriLib this setting is only evaluated in TriLib.h header
file which is common to all the compilers. 

All the library functions and examples have dedicated implementations for each compiler
and are not influenced by this setting. 

3.5.3.2 DSP Extensions

To improve the DSP functionality on the C language level Tasking compiler supports
three additional special DSP specific intrinsic data types to perform fixed point arithmetic.
Refer to the tools documentation for details.

To efficiently implement a circular buffer in the C language additional qualifier _circ is
defined by Tasking. This can be used in conjunction with the other data types. 

Table 3-3 Compiler Selection

_Tasking CCD on the C level for selecting the Tasking compiler

_GHS CCD on the Cpp level for selecting the GHS compiler

COR1 Hardware workaround for TriCore ver1.2

COR14 Hardware workaround for TriCore ver1.2

CPU5 Hardware workaround for TriCore ver1.3

Table 3-4 Tasking Special Data Types

_sfract 16 bits: 1 sign bit + 15 mantissa bits

_fract 32 bits: 1 sign bit + 31 mantissa bits

_accum 64 bits: 1 sign bit + 17 integral bits + 46 mantissa bits
User’s Manual 3-26 V 1.2, 2000-01



 DSP Library Notations
GHS compiler, extended support of DSP functionality is implemented by defining C++
classes.

Circular buffer pointer is implemented in GHS C++ compiler as a templatized class.

To make the library portable, TriLib function arguments use following predefined data
types.

Depending on the compiler used and the setting of _DSPEXT CCD following
assignments are used (implemented in TriLib.h)

DSPEXT CCD has effect on the C/C++ level as well on the assembly implementations
of the TriLib function.

3.5.4  Workarounds of known Behavioral Deviations 

The instruction set of TriCore is defined in different syntax for the GreenHills and Tasking
Tool sets. There are different deviations in each of the compilers. Particularly the
GreenHills doesn’t support some instructions in its Multi 2000 ver 2.0 and also there are
behavioral changes in the ver 2.0.2. This can be potential risk in the development for

Table 3-5 GHS Special Data Types

frac16 16 bits: 1 sign bit + 15 mantissa bits

frac32 32 bits: 1 sign bit + 31 mantissa bits

frac64 64 bits: 1 sign bit + 17 integral bits + 46 mantissa bits

Table 3-6 Data Types

DataS 16-bit operands

DataL 32-bit operands

cptrDataS circular-pointer to DataS circular-buffer

cptrDataL circular-pointer to DataL circular-buffer

Table 3-7 DSPEXT CCD Assignments

 DSPEXT=FALSE  DSPEXT=TRUE

Tasking, GHS, GNU Tasking GHS

DataS short _sfract frac16

DataL int _fract frac32

CptrDataS struct (TriLib.h) _sfract _circ* circptr<frac16>
User’s Manual 3-27 V 1.2, 2000-01



 DSP Library Notations
people to migrate from one compiler to other. To give some instances of the known
deviations.

Conditional move instruction (cmov,cmovn) is not supported in GHS ver 2.0 in this case
select (sel,seln) instructions has to be used.

The data memory addressing is bit complicated in GHS, there are special syntax to do
the same for instance syntaxes such as %sdaoff etc., are used. Refer the GHS
documentation for more details.

The jz has problems in GHS ver 2.0 so in order to workaround this, usage of jeq is
encouraged, The instruction jz works on GHS ver 2.0.2. The Sine/Cosine functions use
jz instruction and will run on ver 2.0.2.

3.5.5 Testing Methodology

The TriLib is tested on GHS, Tasking simulator and TriCore TC10GP TriBoard ver2.4.

The Hardware workarounds have to be enabled only if the TriLib is intended to run on
TC10GP (TriCore ver1.2, ver1.3) processor hardware.
User’s Manual 3-28 V 1.2, 2000-01



 Function Descriptions
4 Function Descriptions
Each function is described with its signature, inputs, outputs, return, brief description,
pseudocode, techniques used, assumptions made, memory note, how it is implemented,
example, cycle count and code size.

Functions are classified into the following categories.

• Complex Arithmetic functions
• Vector functions
• FIR filters
• IIR filters
• Adaptive filters
• Fast Fourier Transforms
• Discrete Cosine Transform
• Mathematical functions
• Matrix operations
• Statistical functions

4.1 Conventions

4.1.1 Argument Conventions

The following conventions have been followed while describing the arguments for each
individual function.

Table 4-1 Argument Conventions

Argument Convention

X,Y Input data or input data vector

R Output data

nX, nY, nR The size of vectors X, Y, and R respectively. In functions

where nX = nY = nR, only nX has been used

H Filter coefficient vector (filter routines only)

nH The size of vector H. Usually not defined explicitly 

DataS Data type definition equating a short, a 16-bit value representing a 
1Q15 number

DataL Data type definition equating a long, a 32-bit value representing a 1Q31 
number

DataD Reserved for 64-bit value
User’s Manual 4-29 V 1.2, 2000-01



 Function Descriptions
4.1.2 Register Naming Conventions

The following register naming conventions have been followed.

cptrDataS Circular pointer structure

CplxS Data type definition equating a short, a 16-bit value representing a 
1Q15 complex number

CplxL Data type definition equating a long, a 32-bit value representing a 1Q31 
complex number

aR Pointer to Output-Buffer

Table 4-2 Register Naming Conventions

Argument Convention

a Address register or data type prefix

ca Circular buffer address register pair

Table 4-1 Argument Conventions

Argument Convention
User’s Manual 4-30 V 1.2, 2000-01



 Function Descriptions
4.2 Complex Arithmetic Functions

4.2.1 Complex Numbers

A complex number z is an ordered pair (x,y) of real numbers x and y, written as 

z= (x,y)

where x is called the real part and y the imaginary part of z. 

4.2.2 Complex Number Representation

A complex number can be represented in different ways, such as

In the complex functions implementation, the rectangular form is considered.

4.2.3 Complex Plane

The geometrical representation of complex numbers as points in the plane is of great
importance. Choose two perpendicular coordinate axis in the Cartesian coordinate
system. The horizontal x-axis is called the real axis, and the vertical y-axis is called the
imaginary axis. Plot a given complex number z=(x,y) = x + iy as the point P with
coordinates (x, y). The xy-plane in which the complex numbers are represented in this
way is called the Complex Plane. This is also called as the Argand diagram after the
French mathematician Jean Robert Argand.

Rectangular form : [4.1]

Trigonometric form : [4.2]

Exponential form : [4.3]

Magnitude and angle form : [4.4]

C R iI+=

C M φ( ) j φ( )sin+cos[ ]=

C Me
iφ

=

C M φ∠=
User’s Manual 4-31 V 1.2, 2000-01



 Function Descriptions
Figure 4-1 The Complex Plane (Argand Diagram)

4.2.4 Complex Arithmetic

Addition

if z1 and z2 are two complex numbers given by z1 =x1+iy1 and z2 = x2 + iy2, 

z1+z2 = (x1+iy1) + (x2 + iy2) = (x1+x2) + i(y1+y2) [4.5]

Subtraction

if z1 and z2 are two complex numbers given by z1 =x1+iy1 and z2 = x2 + iy2, 

z1-z2 = (x1-x2) + i(y1-y2) [4.6]

Multiplication

if z1 and z2 are two complex numbers given by z1 =x1+iy1 and z2 = x2 + iy2, 

z1.z2 = (x1+iy1).(x2 + iy2) = x1x2 + ix1y2 + iy1x2 + i2 y1y2 

        = (x1x2 - y1y2) + i(x1y2 + x2y1) [4.7]

P

O (Real Axis)

(Imaginary
Axis)

x

y

z = x + iy
User’s Manual 4-32 V 1.2, 2000-01



 Function Descriptions
Conjugate

The complex conjugate, z of a complex number z = x+iy is given by

 z = x - iy [4.8]

and is obtained by geometrically reflecting the point z in the real axis.

Magnitude

The magnitude of a complex number z=x+iy is given by

  [4.9]

Geometrically, |z| is the distance of the point z from the origin.

|z1-z2| is the distance between z1 and z2.

Phase

The phase of complex number z=x+iy is given by

phase = tan-1(y/x) [4.10]

Shift

Shifting of a complex number is indicated by the shift value. Left shifting is done if the 
shift value is positive and right shifting is done if shift value is negative.

[4.11]

z x
2

y
2

+=

Zr x abs shiftval( ) if shiftval 0<( ),»=

else x shiftval«( )
Zi y abs shiftval( ) if shiftval 0<( ),»=

else y shiftval«( )
User’s Manual 4-33 V 1.2, 2000-01



 Function Descriptions
4.2.5 Complex Number Schematic

Figure 4-2 16-bit Complex number representation

Figure 4-3 32-bit Complex number representation

31 15 0

Real Imaginary

Sign
Bit

63 31 0

Real Imaginary

Sign Bit
User’s Manual 4-34 V 1.2, 2000-01



 Function Descriptions
4.2.6 Complex Data Structure

4.2.7 Descriptions

The following complex arithmetic functions for 16 bit and 32 bit are described.

• Addition (with and without saturation)
• Subtraction (with and without saturation)
• Multiplication (with and without saturation)
• Conjugate
• Magnitude
• Phase
• Shift

Table 4-3 Complex Data Structure

Tasking GHS ANSI C/GNU

16 bit

typedef struct
{
   _sfract imag;
   _sfract real;
} CplxS;

typedef struct
{
   frac16 imag;
   frac16 real;
} CplxS;

typedef struct
{
   short imag;
   short real;
} CplxS;

32 bits

typedef struct
{
   _fract imag;
   _fract real;
} CplxL;

typedef struct
{
   frac32 imag;
   frac32 real;
} CplxL;

typedef struct
{
   long imag;
   long real;
} CplxL;
User’s Manual 4-35 V 1.2, 2000-01



 Function Descriptions
CplxAdd_16 Complex Number Addition for 16 bits

Signature CplxS CplxAdd_16(CplxS X, 
                               CplxS Y
                               );

Inputs X : 16 bit Complex input value

Y : 16 bit Complex input value

Output None

Return The sum of two complex numbers as a 16 bit complex number

Description This function computes the sum of two 16 bit complex 
numbers. Wraps around the result in case of overflow.
The algorithm is as follows 

[4.12]

Pseudo code

{
   R.real = X.real + Y.real; 
                      //add the real part
   R.imag = X.imag + Y.imag; 
                      //add the imaginary part
   return R;
}

Techniques None

Assumptions • Input and output has a real and an imaginary part packed
as 16 bit data to make a 32 bit complex data

Rr xr yr+=

Ri xi yi+=
User’s Manual 4-36 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-4 Complex Number addition for 16 bits

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 1+2

Code Size 6 bytes

CplxAdd_16 Complex Number Addition for 16 bits (cont’d)

31 15 0 31 15 0

+

+

31 15 0

Real Imaginary Real Imaginary

Real Imaginary
User’s Manual 4-37 V 1.2, 2000-01



 Function Descriptions
CplxAdds_16 Complex Number Addition for 16 bits with saturation 

Signature CplxS CplxAdds_16(CplxS X, 
                                 CplxS Y
                                 );

Inputs X : 16 bit Complex input value

Y : 16 bit Complex input value

Output None

Return The sum of two complex numbers as a 16 bit saturated 
complex number

Description This function computes the sum of two 16 bit complex 
numbers. In case of overflow, this saturates the result to 
0x7FFF for positive values and 0x8000 for negative values. 
This is applicable for both real and imaginary part of the 
complex number. The algorithm is as follows

[4.13]

Pseudo code

{
   R.real = (frac16 sat)(X.real + Y.real);
                      //add the real part
   R.imag = (frac16 sat)(X.imag + Y.imag);
                      //add the imaginary part
   return R;
}

Techniques None

Assumptions • Input and output has a real and an imaginary part packed
as 16 bit data to make a 32 bit complex data

Rr xr yr+=

Ri xi yi+=
User’s Manual 4-38 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-5 Complex number addition for 16 bits with saturation

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 1+2

Code Size 6 bytes

CplxAdds_16 Complex Number Addition for 16 bits with saturation  
(cont’d)

31 15 0 31 15 0

+

+

Real Imaginary Real Imaginary

31 15 0

Real Imaginary

Sat Sat
User’s Manual 4-39 V 1.2, 2000-01



 Function Descriptions
CplxSub_16 Complex Number Subtraction for 16 bits

Signature CplxS CplxSub_16(CplxS X, 
                               CplxS Y
                               );

Inputs X : 16 bit Complex input value

Y : 16 bit Complex input value

Output None

Return The difference of two complex numbers as a 16 bit complex 
number

Description This function finds the difference of two 16 bit complex 
numbers. Wraps around the result in case of underflow. The 
algorithm is as follows.

[4.14]

Pseudo code

{
   R.real = X.real - Y.real;
                      //subtract the real part
   R.imag = X.imag - Y.imag;
                      //subtract the imaginary part
   return R;
}

Techniques None

Assumptions • Input and output has a real and an imaginary part packed
as 16 bit data to make a 32 bit complex data

Rr xr yr–=

Ri xi yi–=
User’s Manual 4-40 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-6 Complex number subtraction for 16 bits

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 1+2

Code Size 6 bytes

CplxSub_16 Complex Number Subtraction for 16 bits (cont’d)

31 15 0 31 15 0

-

-

31 15 0

Real Imaginary Real Imaginary

Real Imaginary
User’s Manual 4-41 V 1.2, 2000-01



 Function Descriptions
CplxSubs_16 Complex Number Subtraction for 16 bits with 
saturation

Signature CplxS CplxSubs_16(CplxS X, 
                                 CplxS Y
                                 );

Inputs X : 16 bit Complex input value

Y : 16 bit Complex input value

Output None

Return The difference of two complex numbers as a 16 bit saturated 
complex number

Description This function finds the difference of two 16 bit complex 
numbers. In case of overflow, this saturates the result to 
0x7FFF for positive values and 0x8000 for negative values. 
The algorithm is as follows.

[4.15]

Pseudo code

{
   R.real = (frac16 sat)(X.real - Y.real);
                      //subtract the real part
   R.imag = (frac16 sat)(X.imag - Y.imag);
                      //subtract the imaginary part
   return R;
}

Techniques None

Assumptions • Input and output has a real and an imaginary part packed
as 16 bit data to make a 32 bit complex data

Rr xr yr–=

Ri xi yi–=
User’s Manual 4-42 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-7 Complex number subtraction for 16 bits with saturation

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 1+2

Code Size 6 bytes

CplxSubs_16 Complex Number Subtraction for 16 bits with 
saturation (cont’d)

31 15 0 31 15 0

-

-

Real Imaginary Real Imaginary

31 15 0

Real Imaginary

Sat Sat
User’s Manual 4-43 V 1.2, 2000-01



 Function Descriptions
CplxMul_16 Complex Number Multiplication for 16 bits

Signature void CplxMul_16(CplxS X, 

                           CplxS Y,

                           CplxL *R

                            );

Inputs X : 16 bit Complex input value

Y : 16 bit Complex input value

Output R : The pointer to the product of two 
complex numbers as a 64 bit 
complex number

Return None

Description This function computes the product of the two 16 bit complex 
numbers. Wraps around the result in case of overflow.
The complex multiplication is computed as follows.

Pseudo code

{
   R->real = X.real*Y.real - Y.imag*X.imag;
   R->imag = X.real*Y.imag + Y.real*X.imag; 
}

Techniques None

Assumptions • Input is in 1Q15 format
• Input and output has a real and an imaginary part packed

as 16 bit data in 1Q15 format to make a 32 bit complex
data

Rr xr yr xi yi×–×=

Ri xi yr xr yi×+×=
User’s Manual 4-44 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-8 Complex number multiplication for 16 bits

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 6+2

Code Size 30 bytes

CplxMul_16 Complex Number Multiplication for 16 bits (cont’d)

31 15 0 31 15 0

+

63 31 0

Real Imaginary Real Imaginary

Real Imaginary

+

+

+

- +
User’s Manual 4-45 V 1.2, 2000-01



 Function Descriptions
CplxMuls_16 Complex Number Multiplication for 16 bits with 
Saturation

Signature CplxS CplxMuls_16(CplxS X, 

                                CplxS Y

                                );

Inputs X : 16 bit Complex input value

Y : 16 bit Complex input value

Output None

Return The product of two complex numbers as a 32 bit saturated 
complex number

Description This function computes the product of the two 16 bit complex 
numbers. In case of overflow, the result is saturated to 
0x7FFF for positive overflow and 0x8000 for negative 
underflow. 
The complex multiplication is computed as follows.

Pseudo code

{
   R0.real = (frac32 sat)(X.real*Y.real - Y.imag*X.imag);
   R0.imag = (frac32 sat)(X.real*Y.imag + Y.real*X.imag);
   R0.real = (rnd)R0.real; 
                      //rounding
   R0.imag = (rnd)R0.imag;
                      //rounding
   R.real = (frac16 sat)R0.real; 
                      //load lower 16 bits
   R.imag = (frac16 sat)R0.imag; 
                      //load lower 16 bits

   return R;
}

Techniques None

Rr xr yr xi yi×–×=

Ri xi yr xr yi×+×=
User’s Manual 4-46 V 1.2, 2000-01



 Function Descriptions
Assumptions • Inputs are in 1Q15 format
• Input and output has a real and an imaginary part packed

as 16 bit data in 1Q15 format to make a 32 bit complex
data

Memory Note

Figure 4-9 Complex number multiplication for 16 bits with saturation

CplxMuls_16 Complex Number Multiplication for 16 bits with 
Saturation (cont’d)

31 15 0 31 15 0

+

63 31 0

Real Imaginary Real Imaginary

Real Imaginary

+

+

+

- +

Round

Sat

Round

Sat

31 15 0

Real Imaginary
User’s Manual 4-47 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 9+2

Code Size 34 bytes

CplxMuls_16 Complex Number Multiplication for 16 bits with 
Saturation (cont’d)
User’s Manual 4-48 V 1.2, 2000-01



 Function Descriptions
CplxConj_16 Complex Number Conjugate for 16 bits

Signature CplxS CplxConj_16(CplxS X);

Inputs X : 16 bit Complex input value

Output None

Return The conjugate of the complex number as a 16 bit complex 
number

Description This function finds the conjugate of a 16 bit complex number. 
Conjugate of a complex number is given by

[4.16]

Pseudo code

{
   R.real = X.real;
   R.imag = 0.0 - X.imag;
                      //negate the imaginary part
   return R;
}

Techniques None

Assumptions • Input and output has a real and an imaginary part packed
as 16 bit data to make a 32 bit complex data

Memory Note

Figure 4-10 Complex number conjugate for 16 bits

R x iy+( ) x iy–= =

31 15 0

Real Imaginary

31 15 0

Real Imaginary

Negate
User’s Manual 4-49 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 3+2

Code Size 12 bytes

CplxConj_16 Complex Number Conjugate for 16 bits (cont’d)
User’s Manual 4-50 V 1.2, 2000-01



 Function Descriptions
CplxMag_16 Magnitude of a Complex Number for 16 bits

Signature DataL CplxMag_16(CplxS X);

Inputs X : 16 bit Complex input value

Output None

Return Magnitude of the complex number as 32 bit integer or fract

Description This function finds the magnitude of a complex number. The 
algorithm is as follows 

[4.17]

Pseudo code

{
   int indx;
   frac32 sat tempX;
   frac32 sat tempY;
   frac32 sat temp;

   frac32 sqrttab[15] = {0.999999999999, 0.7071067811865, 0.5,
                         0.3535533905933, 0.25, 0.1767766952966,
                         0.125, 0.08838834764832, 0.0625, 0.04419417382416,
                         0.03125, 0.02209708691208, 0.015625, 
                         0.01104854345604, 0.0078125};

   //Scale down the input by 2
   X.real >>= 1;
   X.imag >>= 1;

   //Power = real^2 + imag^2
   tempX = (X.real * X.real);
   tempY = (X.imag * X.imag);
   tempX += tempY;

R x
2

y
2

+=
User’s Manual 4-51 V 1.2, 2000-01



 Function Descriptions
   if (tempX == 0)
   {
      return tempX;
   }
   //Mag = sqrt(power);
   indx = exp1(tempX);//calculate the leading zero 
   tempX = norm(tempX,indx);
                      //normalise
   tempY = tempX >> 1;//y = x/2
   tempY -= 0.5;      //y = x/2 - 0.5
   tempX = tempY + 0.9999999999999999;
                      //sqrt(x) = y + 1
   temp = (tempY * tempY);
                      // y^2
   tempX -= temp >> 1;//sqrt(x) = (y + 1) - 0.5*y^2
   temp =(temp*tempY);//y^3
   tempX += temp >> 1;//sqrt(x) = (y + 1) - 0.5*y^2 + 0.5*y^3
   temp = (temp * tempY);
                      //y^4
   tempX -= temp * 0.625;
                      //sqrt(x) = (y + 1) - 0.5*y^2 + 0.5*y^3 - 0.625*y^4
   temp = (temp * tempY);
                      //y^5
 
   tempX = tempX + (0.875 * temp);
                      //sqrt(x) = (y + 1) - 0.5*y^2 + 0.5*y^3 
                      //           - 0.625*y^4 +0.875*y^5
   temp = tempX << 15;
   if (temp >= 0.5)
   {
       tempX >>= 16;
       tempX <<= 16;
       tempX += 0.0000305178125;
   }
   else
   {
      tempX >>=16;
      tempX <<=16;
   }
   tempX = tempX * sqrttab[indx];
   
   return tempX;
}

CplxMag_16 Magnitude of a Complex Number for 16 bits (cont’d)
User’s Manual 4-52 V 1.2, 2000-01



 Function Descriptions
Techniques None

Assumptions None

Memory Note None

Implementation The real and imaginary parts of a complex number x+iy are 
scaled down by two to avoid overflow.
The computation of power(x2+y2) is done by a dual MAC 
instruction.
If the power is zero, then the whole computation is not done 
to save cycles. Power(x2+y2) is normalized and the exponent 
is used as the scale factor in the square root operation. The 
square root is computed using the taylor approximation 
series.
The taylor series for square root is as follows:
Let Z = x2+y2

R = (Z + 1)/2

[4.18]

The final result sqrt(Z) is again rescaled using the scale factor 
as index of the square root table to give the magnitude.

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplxMag.c

Cycle Count 7+2 
7+42+2 

(Best)
(Worst)

Code Size 118 bytes 

140 bytes (Data)

CplxMag_16 Magnitude of a Complex Number for 16 bits (cont’d)

sqrt Z( ) R 1 0.5R
2

0.5R
3

0.625R
4

– 0.875R
5

–+–+=
User’s Manual 4-53 V 1.2, 2000-01



 Function Descriptions
CplxPhase_16 Phase of a Complex Number for 16 bits

Signature DataL CplxPhase_16 (CplxS X);

Inputs X : 16 bit Complex input value

Output None

Return The phase of the input complex number as a 32 bit integer or 
fract

Description This function computes the phase of a complex number. The 
algorithm is as follows.

Phase = tan-1(y/x) [4.19]

Pseudo code

{
   int indx;
   int flag;
   frac32 sat tempX;
   frac32 sat tempY;
   frac32 sat temp;

   //Scale down the input by 2
   X.real >>= 1;
   X.imag >>= 1;

   //Power = real^2 + imag^2
   //Taking absolute value of input complex number
   if (X.real < 0)
   {
      tempX = -X.real; 
   }
   else
   {
      tempX = X.real;
   }
User’s Manual 4-54 V 1.2, 2000-01



 Function Descriptions
   if (X.imag < 0)
   {
      tempY = -X.imag;
   }
   else
   {
      tempY = X.imag;
   }

   //Phase = arctan(imag/real)
   if (tempX <= tempY)
   {
      flag = 1;
      temp = tempX/tempY;
   }
   else
   {
      flag = 0;
      temp = tempY/tempX;
   }
   indx = exp1(temp); //calculate the leading zero 
   temp = norm(temp,indx);
                      //normalise
   //Polynomial calculation
   tempX = K5 * temp + K4;
   tempX = tempX * temp + K3;
   tempX = tempX * temp + K2;
   tempX = tempX * temp + K1;
   tempX = tempX * temp;
   temp = tempX << 15;

CplxPhase_16 Phase of a Complex Number for 16 bits (cont’d)
User’s Manual 4-55 V 1.2, 2000-01



 Function Descriptions
   //if imag > real
   if (flag == 1)
   {
       tempX = 0.5 - tempX;
   }
   //third quadrant X = X - 180 deg
   if (X.real < 0 && X.imag < 0)
   {
      tempX = tempX - 0.9999999999999;
   }
   //second quadrant X = 180 - X deg
   else if (X.real < 0 && X.imag >= 0)
   {
      tempX = 0.9999999999999 - tempX;
   }
   //fourth quadrant X = - X 
   else if (X.real >= 0 && X.imag < 0)
   {
      tempX = -tempX;
   }
   //Rounding
   if (temp >= 0.5)
   {
      tempX >>= 16;
      tempX <<= 16;
      tempX += 0.0000305178125;
   }
   else
   {
      tempX >>=16;
      tempX <<=16;
   }
   return tempX;
}

Techniques None

Assumptions None

Memory Note None

CplxPhase_16 Phase of a Complex Number for 16 bits (cont’d)
User’s Manual 4-56 V 1.2, 2000-01



 Function Descriptions
Implementation The phase in a complex plane is the arctan(y/x), where y/x=z.

By Taylor series, 

phase = tan-1(z) for Z<=1                           [4.20]

or 0.5-tan-1(1/z) for z>1                              [4.21]

If , the flag is set to indicate that Equation [4.20] to be 
computed, otherwise Equation [4.21] is computed.

After calculating y/x, the results are normalized. Then the 
arctan is calculated by using the Taylor approximation series 
is a polynomial expansion. This is as follows:

[4.22]

The final part of the processing extracts the sign of real and 
imaginary part and branches to appropriate quadrant.
I quadrant  :       phase = arctan(y/x) radian
II quadrant :       phase = -arctan(y/x) radian
III quadrant:       phase = arctan(y/x)-  radian
IV quadrant:       phase = arctan(y/x) radian

The output of the function is given in radians and has to be 
scaled. The output is as follows
+  = 0x7fff or 0.99999999
-  = 0x8000 or -1.0

/2 is approximately equal to 0.5
- /2 is approximately equal to -0.5

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplxPh.c

CplxPhase_16 Phase of a Complex Number for 16 bits (cont’d)

y x≤

arc z( )tan 0.318253z 0.003314z
2

0.130908z
3

–+=

+ 0.068542z
4

0.009159z
5

–

π
π

π
π
π
π

User’s Manual 4-57 V 1.2, 2000-01



 Function Descriptions
Cycle Count 52+2 
62+2 

(Best)
(Worst)

Code Size 180 bytes

20 bytes (Data)

CplxPhase_16 Phase of a Complex Number for 16 bits (cont’d)
User’s Manual 4-58 V 1.2, 2000-01



 Function Descriptions
CplxShift_16 Complex Number Shift for 16 bits

Signature CplxS CplxShift_16(CplxS X, 

                                int shiftVal

                                );

Inputs X : 16 bit Complex input value

shiftVal : shift value as a signed integer

Output None

Return Output value after the real and imaginary parts are shifted

Description This function performs shifting of a 16 bit complex number 
indicated by the shiftVal. Left shifting is done if the shiftVal is 
positive and Right shifting is done if shiftVal is negative.
The algorithm is as follows.

[4.23]

Pseudo code

{
   real.real = X.real << shiftVal;
   real.imag = X.imag << shiftVal;

   return real;
}

Techniques None

Assumptions None

Rr xr abs shiftVal( ) if shiftVal 0<( ),»=

else xr shiftVal«( )

Ri xi abs shiftVal( ) if shiftVal 0<( ),»=

else xi shiftVal«( )
User’s Manual 4-59 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-11 Complex number shift for 16 bits

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 1+2

Code Size 6 bytes

CplxShift_16 Complex Number Shift for 16 bits (cont’d)

31 15 0

31 15 0

Real Imaginary

Real Imag

....

0..0 0..0

.... 31 15 0

Real Imag

....

Sign Sign

Left shift if
0<shift value<16

Right shift if
-16<shift value< 0

....
User’s Manual 4-60 V 1.2, 2000-01



 Function Descriptions
CplxAdd_32 Complex Number Addition for 32 bits

Signature void CplxAdd_32(CplxL *X, 

                            CplxL *Y, 

                            CplxL *R 

                             );

Inputs X : 32 bit Complex input value

Y : 32 bit Complex input value

Output R : The sum of two complex numbers 
as a 32 bit complex number.

Return None

Description This function computes the sum of two 32 bit complex 
numbers. Wraps around the result in case of overflow.
The algorithm is as follows 

[4.24]

Pseudo code

{
   R->real = X->real + Y->real;
   R->imag = X->imag + Y->imag;
}

Techniques None

Assumptions • Inputs are in 1Q31 format
• Input and output has a real and an imaginary part packed

as 32 bit data in 1Q31 format to make a 64 bit complex
data

• Inputs are doubleword aligned

Rr xr yr+=

Ri xi yi+=
User’s Manual 4-61 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-12 Complex number addition for 32 bits

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 4+2

Code Size 22 bytes

CplxAdd_32 Complex Number Addition for 32 bits (cont’d)

63 31 0 63 31 0

+

+

63 31 0

Real Imaginary Real Imaginary

Real Imaginary
User’s Manual 4-62 V 1.2, 2000-01



 Function Descriptions
CplxAdds_32 Complex Number Addition for 32 bits with 
saturation

Signature void CplxAdds_32(CplxL        *X, 

                              CplxL        *Y, 

                              CplxL_Sat *R 

                              );

Inputs X : 32 bit Complex input value

Y : 32 bit Complex input value

Output R : The sum of two complex numbers 
as a 32 bit saturated complex 
number.

Return None

Description This function computes the sum of two 32 bit complex 
numbers. In case of underflow, this saturates the result to 
0x7FFFFFFF for positive values and 0x80000000 for negative 
values.
Wraps around the result in case of overflow.

The algorithm is as follows 

[4.25]

Pseudo code

{
   R->real = (frac32 sat)(X->real + Y->real);
   R->imag = (frac32 sat)(X->imag + Y->imag);
}

Techniques None

Assumptions • Inputs are in 1Q31 format
• Input and output has a real and an imaginary part packed

as 32 bit data in 1Q31 format to make a 64 bit complex
data

• Inputs are doubleword aligned

Rr xr yr+=

Ri xi yi+=
User’s Manual 4-63 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-13 Complex number addition for 32 bits with saturation

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 4+2

Code Size 22 bytes

CplxAdds_32 Complex Number Addition for 32 bits with saturation 
(cont’d)

63 31 0 63 31 0

+

+

Real Imaginary Real Imaginary

63 31 0

Real Imaginary

Sat Sat
User’s Manual 4-64 V 1.2, 2000-01



 Function Descriptions
CplxSub_32 Complex Number Subtraction for 32 bits

Signature void CplxSub_32(CplxL *X, 

                            CplxL *Y, 

                            CplxL *R

                             );

Inputs X : 32 bit Complex input value

Y : 32 bit Complex input value

Output R : The difference of two complex 
numbers as a 32 bit complex 
number

Return None

Description This function computes the difference of two 32 bit complex 
numbers. Wraps around the result in case of overflow.
The algorithm is as follows.

[4.26]

Pseudo code

{
   R->real = X->real - Y->real;
   R->imag = X->imag - Y->imag;
}

Techniques None

Assumptions • Inputs are in 1Q31 format
• Input and output has a real and an imaginary part packed

as 32 bit data in 1Q31 format to make a 64 bit complex
data

• Inputs are doubleword aligned

Rr xr yr–=

Ri xr yi–=
User’s Manual 4-65 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-14 Complex number subtraction for 32 bits

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 4+2

Code Size 22 bytes

CplxSub_32 Complex Number Subtraction for 32 bits (cont’d)

63 31 0 63 31 0

-

-

63 31 0

Real Imaginary Real Imaginary

Real Imaginary
User’s Manual 4-66 V 1.2, 2000-01



 Function Descriptions
CplxSubs_32 Complex Number Subtraction for 32 bits with 
saturation

Signature void CplxSubs_32(CplxL        *X, 

                              CplxL        *Y, 

                              CplxL_Sat *R 

                              );

Inputs X : 32 bit Complex input value

Y : 32 bit Complex input value

Output R : The difference of two complex 
numbers as a 32 bit saturated 
complex number

Return None

Description This function computes the difference of two 32 bit complex 
numbers. In case of underflow, this saturates the result to 
0x7FFFFFFF for positive values and 0x80000000 for negative 
values. The algorithm is as follows.

[4.27]

Pseudo code

{
   R->real = (frac32 sat)(X->real - Y->real);
   R->imag = (frac32 sat)(X->imag - Y->imag);
}

Techniques None

Assumptions • Inputs are in 1Q31 format
• Input and output has a real and an imaginary part packed

as 32 bit data in 1Q31 format to make a 64 bit complex
data

• Inputs are doubleword aligned

Rr xr yr–=

Ri xr yi–=
User’s Manual 4-67 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-15 Complex number subtraction for 32 bits with saturation

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 4+2

Code Size 22 bytes

CplxSubs_32 Complex Number Subtraction for 32 bits with 
saturation (cont’d)

63 31 0 63 31 0

-

-

Real Imaginary Real Imaginary

63 31 0

Real Imaginary

Sat Sat
User’s Manual 4-68 V 1.2, 2000-01



 Function Descriptions
CplxMul_32 Complex Number Multiplication for 32 bits

Signature void CplxMul_32(CplxL *X, 

                           CplxL *Y, 

                           CplxL *R 

                           );

Inputs X : 32 bit Complex input value

Y : 32 bit Complex input value

Output R : The product of two complex 
numbers as a 32 bit complex 
number

Return None

Description This function computes the product of the two 32 bit complex 
numbers. Wraps around the result in case of overflow.

The complex multiplication is computed as follows.

Pseudo code

{
   frac64 real;
   frac64 ima;

   real = (frac64)((X->real * Y->real) - (X->imag * Y->imag));
                      //real part
   ima = (frac64)((X->real * Y->imag) + (X->imag * Y->real)); 
                      //imaginary part

   R->real = (frac32)real;
   R->imag = (frac32)ima;
}

Techniques None

Assumptions • Inputs are in 1Q31 format
• Input and output has a real and an imaginary part packed

as 32 bit data in 1Q31 format to make a 64 bit complex
data

• Inputs are doubleword aligned

Rr xr yr xi yi×–×=

Ri xi yr xr yi×+×=
User’s Manual 4-69 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-16 Complex number multiplication for 32 bits

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 13+2

Code Size 38 bytes

CplxMul_32 Complex Number Multiplication for 32 bits (cont’d)

63 31 0 63 31 0

+

63 31 0

Real Imaginary Real Imaginary

Real Imaginary

+

+

+

- +
User’s Manual 4-70 V 1.2, 2000-01



 Function Descriptions
CplxMuls_32 Complex Number Multiplication for 32 bits with 
Saturation

Signature void CplxMuls_32(CplxL        *X, 

                             CplxL        *Y, 

                             CplxL_Sat *R 

                             );

Inputs X : 32 bit Complex input value

Y : 32 bit Complex input value

Output R : The product of two complex 
numbers as a 32 bit complex 
number

Return None

Description This function computes the product of the two 32 bit complex 
numbers. In case of overflow, the result is saturated to 
0x7FFFFFFF for positive overflow and 0x80000000 for 
negative underflow. 

The complex multiplication is computed as follows.

Pseudo code

{
   frac64  real;
   frac64  ima;

   real = (frac64)((X->real * Y->real) - (X->imag * Y->imag));
                      //real part
   ima = (frac64)((X->real * Y->imag) + (X->imag * Y->real)); 
                      //imaginary part

   R->real = (frac32 sat)real;
   R->imag = (frac32 sat)ima;
}

Techniques None

Rr xr yr xi yi×–×=

Ri xi yr xr yi×+×=
User’s Manual 4-71 V 1.2, 2000-01



 Function Descriptions
Assumptions • Inputs are in 1Q31 format
• Input and output has a real and an imaginary part packed

as 32 bit data in 1Q31 format to make a 64 bit complex
data

• Inputs are doubleword aligned

Memory Note

Figure 4-17 Complex number multiplication for 32 bits with saturation

CplxMuls_32 Complex Number Multiplication for 32 bits with 
Saturation (cont’d)

63 31 0 63 31 0

+

63 31 0

Real Imaginary Real Imaginary

Real Imaginary

+

+

+

- +

Sat Sat

32 16 0

Real Imaginary
User’s Manual 4-72 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 13+2

Code Size 38 bytes

CplxMuls_32 Complex Number Multiplication for 32 bits with 
Saturation (cont’d)
User’s Manual 4-73 V 1.2, 2000-01



 Function Descriptions
CplxConj_32 Complex Number Conjugate for 32 bits

Signature void CplxConj_32(CplxL *X, 

                             CplxL *R

                             );

Inputs X : 32 bit Complex input value

Output R : The conjugate of the complex 
number

Return None

Description This function finds the conjugate of a 32 bit complex number. 
Conjugate of a complex number is given by

[4.28]

Pseudo code

{
   R->imag = 0.0 - X->imag;
   R->real = X->real;
}

Techniques None

Assumptions • Input is in 1Q31 format
• Input and output has a real and an imaginary part packed

as 32 bit data in 1Q31 format to make a 32 bit complex
data

• Inputs are doubleword aligned

R x iy+( ) x iy–= =
User’s Manual 4-74 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-18 Complex number conjugate for 32 bits

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 2+2

Code Size 14 bytes

CplxConj_32 Complex Number Conjugate for 32 bits (cont’d)

63 31 0

Real Imaginary

63 31 0

Real Imaginary

Negate
User’s Manual 4-75 V 1.2, 2000-01



 Function Descriptions
CplxMag_32 Magnitude of a Complex Number for 32 bits

Signature DataL CplxMag_32(CplxL X);

Inputs X : 32 bit Complex input value

Output None

Return The magnitude of the complex number as a 32 bit integer or 
fract

Description This function finds the magnitude of a 32 bit complex number.

The algorithm is as follows 

[4.29]

Pseudo code

{
   int indx;
   frac32 sat tempX;
   frac32 sat tempY;
   frac32 sat temp;
   frac32 sat sqrttab[15] = {0.999999999999, 0.7071067811865, 0.5,
                             0.3535533905933, 0.25, 0.1767766952966, 0.125, 
                             0.08838834764832, 0.0625, 0.04419417382416,
                             0.03125, 0.02209708691208, 0.015625, 
                             0.01104854345604, 0.0078125};
   //Scale down the input by 2
   X->real >>= 1;
   X->imag >>= 1;

   //Power = real^2 + imag^2
   tempX = (X->real * X->real);
   tempY = (X->imag * X->imag);
   tempX += tempY;

   //Mag = sqrt(power);
   indx = exp1(tempX);//calculate the leading zero 
   tempX = norm(tempX,indx);
                      //normalise
   tempY = tempX >> 1;//y = x/2
   tempY -= 0.5;      //y = x/2 - 0.5
   tempX = tempY + 0.9999999999999999;
                      //sqrt(x) = y + 1

R x
2

y
2

+=
User’s Manual 4-76 V 1.2, 2000-01



 Function Descriptions
   temp = (tempY * tempY);
                      //y^2
   tempX -= temp >> 1;//sqrt(x) = (y + 1) - 0.5*y^2
   temp= (temp*tempY);//y^3
   tempX += temp >> 1;//sqrt(x) = (y + 1) - 0.5*y^2 + 0.5*y^3
   temp = (temp * tempY);
                      //y^4
   tempX -= temp * 0.625;
                      //sqrt(x) = (y + 1) - 0.5*y^2 + 0.5*y^3 - 0.625*y^4
   temp = (temp * tempY);
                      //y^5
   tempX = tempX + (0.875 * temp);
                      //sqrt(x) = (y + 1) - 0.5*y^2 + 0.5*y^3 
                      //           - 0.625*y^4 +0.875*y^5
   tempX = tempX * sqrttab[indx];
   return tempX;
}

Techniques None

Assumptions • Inputs are doubleword aligned

Memory Note None

CplxMag_32 Magnitude of a Complex Number for 32 bits (cont’d)
User’s Manual 4-77 V 1.2, 2000-01



 Function Descriptions
Implementation The real and imaginary parts of a complex number x+iy are 
scaled down by two to avoid overflow.

MAC is used to square the imaginary part and dual MAC is 
used to square the real part. Add these to give the 
power(x2+y2).

If the power is zero, then the whole computation is not done 
to save cycles. Power(x2+y2) is normalized and the exponent 
is used as the scale factor in the square root operation. The 
square root is computed using the taylor approximation 
series.

The taylor series for square root is as follows:
Let Z = x2+y2

R = (Z + 1)/2

[4.30]

The final result sqrt(Z) is again rescaled using the scale factor 
as index of the square root table to give the magnitude.

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplxMag.c

Cycle Count 52
62 

(Best)
(Worst)

Code Size 126 bytes

140 bytes (Data)

CplxMag_32 Magnitude of a Complex Number for 32 bits (cont’d)

sqrt Z( ) R 1 0.5R
2

0.5R
3

0.625R
4

– 0.875R
5

–+–+=
User’s Manual 4-78 V 1.2, 2000-01



 Function Descriptions
CplxPhase_32 Phase of a Complex Number for 32 bits

Signature DataL CplxPhase_32(CplxL *X);

Inputs X : 32 bit Complex input value

Output None

Return The phase of a complex number as a 32 bit integer or fract

Description This function computes the phase of a complex number. The 
algorithm is as follows.

Phase = tan-1(y/x) [4.31]

Pseudo code

{
   int indx;
   int flag;
   frac32 sat tempX;
   frac32 sat tempY;
   frac32 sat temp;

   //Scale down the input by 2
   X->real >>= 1;
   X->imag >>= 1;

   //Power = real^2 + imag^2
   if (X->real < 0)
   {
      tempX = -X->real;
   }
   else
   {
      tempX = X->real;
   }
   if (X->imag < 0)
   {
      tempY = -X->imag;
   }
   else
   {
      tempY = X->imag;
   }
User’s Manual 4-79 V 1.2, 2000-01



 Function Descriptions
   //Phase = arctan(imag/real)
   if (tempX <= tempY)
   {
      flag = 1;
      temp = tempX/tempY;
   }
   else
   {
      flag = 0;
      temp = tempY/tempX;
   }

   indx = exp1(temp); //calculate the leading zero 
   temp = norm(temp,indx);
                      //normalise
   tempX = K5 * temp + K4;
   tempX = tempX * temp + K3;
   tempX = tempX * temp + K2;
   tempX = tempX * temp + K1;
   tempX = tempX * temp;
   
   if (flag == 1)
   {
      tempX = 0.5 - tempX;
   }

   if (X->real < 0 && X->imag < 0)
   {
      tempX = tempX - 0.9999999999999;   
   }
   else if (X->real < 0 && X->imag >= 0)
   {
      tempX = 0.9999999999999 - tempX;
   }
   else if (X->real >= 0 && X->imag < 0)
   {
      tempX = -tempX;
   }

   return tempX;
}

CplxPhase_32 Phase of a Complex Number for 32 bits (cont’d)
User’s Manual 4-80 V 1.2, 2000-01



 Function Descriptions
Techniques None

Assumptions • Inputs are doubleword aligned

Memory Note None

Implementation The phase in a complex plane is the arctan(y/x), where y/x=z.

By Taylor series, 

phase = tan-1(z) for Z<=1                           [4.32]

or 0.5-tan-1(1/z) for z>1.                             [4.33]

If , the flag is set to indicate that Equation [4.32] to be 
computed, otherwise Equation [4.33] is computed.

After calculating y/x, the results are normalized. Then the 
arctan is calculated by using the Taylor approximation series 
is a polynomial expansion. This is as follows:

[4.34]

The final part of the processing extracts the sign of real and 
imaginary part and branches to appropriate quadrant.
I quadrant  :       phase = arctan(y/x) radian
II quadrant :       phase = -arctan(y/x) radian
III quadrant:       phase = arctan(y/x)-  radian
IV quadrant:       phase = arctan(y/x) radian

The output of the function is given in radians and has to be 
scaled. The output is as follows
+  = 0x7fffffff or 0.99999999
-  = 0x80000000 or -1.0

/2 is approximately equal to 0.5
- /2 is approximately equal to -0.5

CplxPhase_32 Phase of a Complex Number for 32 bits (cont’d)

y x≤

arc z( )tan 0.318253z 0.003314z
2

0.130908z
3

–+=

+ 0.068542z
4

0.009159z
5

–

π
π

π
π
π
π

User’s Manual 4-81 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplxPh.c

Cycle Count 7 
7+44 

(Best)
(Worst)

Code Size 180 bytes

20 bytes (Data)

CplxPhase_32 Phase of a Complex Number for 32 bits (cont’d)
User’s Manual 4-82 V 1.2, 2000-01



 Function Descriptions
CplxShift_32 Complex Number Shift for 32 bits

Signature void CplxShift_32(CplxL *X, 
                             CplxL *R,
                             int      shiftVal
                             );

Inputs X : 32 bit Complex input value

shiftVal : shift value as a signed integer

Output R : Output value after the real and 
imaginary parts are shifted

Return None

Description This function performs shifting of a 32 bit complex number 
indicated by the shiftVal. Left shifting is done if the shiftVal is 
positive and Right shifting is done if shiftVal is negative.

The algorithm is as follows.

[4.35]

Pseudo code

{
   if (Y < 0)
   {
      R->real = X->real >> Y;
      R->imag = X->imag >> Y;
   }
   else if (Y > 0)
   {
      R->real = X->real << Y;
      R->imag = X->imag << Y;
   }
   else
   {
      R->real = X->real;
      R->imag = X->imag;
   }
}

Techniques None

Rr xr abs shiftVal( ) if shiftVal 0<( ),»=

else xr shiftVal«( )

Ri xi abs shiftVal( ) if shiftVal 0<( ),»=

else xi shiftVal«( )
User’s Manual 4-83 V 1.2, 2000-01



 Function Descriptions
Assumptions • Inputs are doubleword aligned

Memory Note

Figure 4-19 Complex number shift for 32 bits

Example Trilib\Example\Tasking\CplxArith\expCplx.c, expCplx.cpp

Trilib\Example\GreenHills\CplxArith\expCplx.cpp,
expCplx.c

Trilib\Example\GNU\CplxArith\expCplx.c

Cycle Count 3+2

Code Size 18 bytes

CplxShift_32 Complex Number Shift for 32 bits (cont’d)

63 31 0

63 31 0

Real Imaginary

Real Imag

....

0..0 0..0

.... 63 31 0

Real Imag

....

Sign Sign

Left shift if
0<shift value<32

Right shift if
-32<shift value< 0

....
User’s Manual 4-84 V 1.2, 2000-01



 Function Descriptions
4.3 Vector Arithmetic Functions

A vector is a quantity that has both magnitude and direction. Many physical quantities
are vectors, e.g., force, velocity and momentum. In order to compare vectors and to
operate on them mathematically, it is necessary to have some reference system that
determines scale and direction, such as Cartesian coordinates. A vector is frequently
symbolized by its components with respect to the coordinate axis. The concept of a
vector can be extended to three or more dimensions.

4.3.1 Descriptions

The following vector arithmetic functions are described.

• Vector addition with saturation
• Vector subtraction with saturation
• Vector Dot product
• Maximum element by index 
• Minimum element by index 
• Maximum element by value 
• Minimum element by value
User’s Manual 4-85 V 1.2, 2000-01



 Function Descriptions
VecAdd Vector Operation - Addition of two vectors

Signature int VecAdd(DataS         *X, 
                   DataS        * Y,
                   DataS_Sat *R,
                   int               nX 
                   );

Inputs X : Pointer to first vector components

Y : Pointer to second vector 
components

nX : Dimension of vector

Output R : Pointer to the sum of two vectors

Return None

Description This function finds the sum of two vectors.

If x and y are two vectors given by x = [x0, x1,....xN-1]T and y = 
[y0, y1,...,yN-1]T, their sum is given by 

Ri = xi + yi   (i = 0,1,..., N-1) [4.36]

Pseudo code

{
   int i;
   for (i = 0;i < nX;i++)
   {
      R[i] = X[i] + Y[i];   
                      //Add
   }
}

Techniques None

Assumptions • The input vectors have the same dimension
User’s Manual 4-86 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-20 Vector Addition

VecAdd Vector Operation - Addition of two vectors (cont’d)

aX

X[1]

X[2]

.

.

.

.

X[0]

X[nX]

Y[1]

Y[2]

.

.

.

.

Y[0]

Y[nX]

R[1]

R[2]

.

.

.

.

R[0]

R[nX]

aR

aY+

+

+

+

User’s Manual 4-87 V 1.2, 2000-01



 Function Descriptions
Implementation The Vector Add function adds with saturation the peer 
elements of two arrays and stores the result in the resultant 
array. It uses the packed Load/Store instruction to load 4 
words of data simultaneously. It adds the 4 elements in one 
go and stores it into the result array. This is applicable for all 
the arrays with sizes equal to the multiples of 4 words. In case 
if the size is of odd or not the multiple of 4 words, it checks the 
remaining elements and correspondingly takes respective 
paths to execute the addition separately from the remaining 
words which is left out.

Example Trilib\Example\Tasking\Vectors\expVect.c, expVect.cpp

Trilib\Example\GreenHills\Vectors\expVect.cpp, expVect.c

Trilib\Example\GNU\Vectors\expVect.c

Cycle Count (Best)

(Worst)

Code Size 84 bytes

VecAdd Vector Operation - Addition of two vectors (cont’d)

7 5
nX
4

-------×+ 4 2+ +

7 5
nX
4

-------×+ 8 2+ +
User’s Manual 4-88 V 1.2, 2000-01



 Function Descriptions
VecSub Vector Operation - Difference of two vectors

Signature int VecSub(DataS         *X, 
                   DataS        *Y,
                   DataS_Sat *R,
                   int               nX 
                   );

Inputs X : Pointer to first vector components

Y : Pointer to second vector 
components

nX : Dimension of vector

Output R : Pointer to difference of two vectors

Return None

Description This function finds the difference of two vectors.

If x and y are two vectors given by x = [x0, x1,....xN-1]T and y = 
[y0, y1,...,yN-1]T, their sum is given by 

Ri = xi - yi   (i = 0,1,..., N-1) [4.37]

Pseudo code

{
   int i;
   for (i = 0;i < nX;i++)
   {
      R[i] = X[i] - Y[i];   
                      //Subtract
   }
}

Techniques None

Assumptions • The input vectors have the same dimension
User’s Manual 4-89 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-21 Vector Subtraction

VecSub Vector Operation - Difference of two vectors (cont’d)

aX

X[1]

X[2]

.

.

.

.

X[0]

X[nX]

Y[1]

Y[2]

.

.

.

.

Y[0]

Y[nX]

R[1]

R[2]

.

.

.

.

R[0]

R[nX]

aR

aY-

-

-

-

User’s Manual 4-90 V 1.2, 2000-01



 Function Descriptions
Implementation The Vector Subtract function subtracts with saturation the X 
array data by the corresponding peer element of Y array and 
stores the result in the resultant array. It uses the packed 
Load/Store instruction to load 4 words of data simultaneously. 
It adds the 4 elements in one go and stores it into the result 
array. This is applicable for all the arrays with sizes equal to 
the multiples of 4 words. In case if the size is of odd or not the 
multiple of 4 words, it checks the remaining elements and 
correspondingly takes respective paths to execute the 
subtraction separately from the remaining words which is left 
out.

Example Trilib\Example\Tasking\Vectors\expVect.c, expVect.cpp

Trilib\Example\GreenHills\Vectors\expVect.cpp, expVect.c

Trilib\Example\GNU\Vectors\expVect.c

Cycle Count (Best)

(Worst)

Code Size 84 bytes

VecSub Vector Operation - Difference of two vectors (cont’d)

7 5
nX
4

-------×+ 4 2+ +

7 5
nX
4

-------×+ 8 2+ +
User’s Manual 4-91 V 1.2, 2000-01



 Function Descriptions
VecDotPro                   Vector Operation - Dot Product of two vectors

Signature DataL VecDotPro(DataS   *X,

                             DataS   *Y,    

                             int         nX

                             );

Inputs X : Pointer to first vector components

Y : Pointer to second vector 
components

nX : Dimension of vectors

Output None

Return Dot product of the two vectors (48-bit output value converted
to 32-bit with saturation)

Description If x and y are two vectors of dimension N, their dot product is 
given by

[4.38]

Pseudo code

{
   int i;
   frac64 product = 0;

   for(i = 0;i < nX;i++)
   {
      product += (frac64) X[i](*)Y[i]; 
   }                  //calculating the dot product
   return(frac32 sat)product;
                      //Format the result to 32-bit saturated value
}

Techniques • Use of MAC instructions
• Intermediate results stored in a 64 bit register (16 guard

bits)
• Dot product output is converted to 16 bit with saturation
• Instruction ordering provided for zero overhead Load/Store

Assumptions • The input vectors have the same dimension

x y⋅ xi yi x0 y0 x1 y1 … xN 1– yN 1–⋅+ +⋅+⋅=⋅

i 0=

N 1–

∑=
User’s Manual 4-92 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-22 Dot product of two vectors

Implementation The Vector Dot Product function multiplies and accumulates 
the X array data by the corresponding peer element of Y 
array. It uses the madd.q instruction to do the multiply and 
accumulate the input data, the final result which is in 17Q47 
format in a 64 bit register is converted to a 32 bit result and is 
saturated.

Example Trilib\Example\Tasking\Vectors\expVect.c, expVect.cpp

Trilib\Example\GreenHills\Vectors\expVect.cpp, expVect.c

Trilib\Example\GNU\Vectors\expVect.c

Cycle Count

Code Size 52 bytes

VecDotPro                   Vector Operation - Dot Product of two vectors (cont’d)

aX

X[1]

.

.

.

.

.

X[0]

X[Size]

Y[1]

.

.

.

.

.

Y[0]

Y[Size]

aY

acc

.

.

.

X[0].Y[0]= + X[1].Y[1]
X[Size].
Y[Size]

5 2 nX 1–[ ]× 5+ +
User’s Manual 4-93 V 1.2, 2000-01



 Function Descriptions
VecMaxIdx Vector Operation - Maximum Element by Index of a 
vector

Signature int VecMaxIdx(DataS   *X, 
                        int        nX
                        );

Inputs X : Pointer to the vector components

nX : Dimension of vector

Output None

Return The maximum element by index of the input vector

Description This function calculates the maximum element by index of a
vector. The input vector components are 16 bit real values.

Pseudo code

{
   frac16 element = -1.0;
   int i;

   for (i = 0;i < nX;i++)
   {
      if (element < X[i])
      {
          element = X[i];
      }
   }
   i = 0;
   while (element != X[i])
   { 
      i++;   
   }

   return i;
}

Techniques None

Assumptions • Inputs are in 1Q15 format
User’s Manual 4-94 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-23 Maximum element by index 

VecMaxIdx Vector Operation - Maximum Element by Index of a 
vector (cont’d)

X[1]

.

.

.

.

.

X[0]

X[size]

Max< x[0] Max=X[0], index=i

Max < x[1]

Max <
x[size]

Max=X[1], index=i

Max=X[size], index=i

Return index

Yes

No

aX
User’s Manual 4-95 V 1.2, 2000-01



 Function Descriptions
Implementation The Vector Maximum by Index function uses the max.h and 
eq.h instructions to optimally find the maximum value in the 
array. The max.h instruction checks the two 32 bit registers 
and returns the bigger 2 words among them into another 
register thereby does two comparison and movement of data 
in one go. Similarly the eq.h checks if the value is equal 
among the two registers, this is used here to find the greater 
value between the two words of a same 32 bit register finally, 
which is found to be in the maximum pair register after the 
computation of maximum element. Since the max.h does two 
comparisons, the loop count is reduced by half. 
The final part of the function is to calculate the index of the 
maximum element, this is done by initializing a index variable 
and is kept on incrementing until the maximum element found 
matches with one of the array’s element, odd array size is 
separately taken care.

Example Trilib\Example\Tasking\Vectors\expVect.c, expVect.cpp

Trilib\Example\GreenHills\Vectors\expVect.cpp, expVect.c

Trilib\Example\GNU\Vectors\expVect.c

Cycle Count

(Best)

(Worst)

Code Size 92 bytes

VecMaxIdx Vector Operation - Maximum Element by Index of a 
vector (cont’d)

4 2
nX
4

------- 1+× 3 2
1
2
---× 

  2+ + + +

4 2
nX
4

------- 1+× 3 2
nX
2

-------× 
  2+ + + +
User’s Manual 4-96 V 1.2, 2000-01



 Function Descriptions
VecMinIdx Vector Operation - Minimum Element by index of a 
vector

Signature int VecMinIdx(DataS    *X, 
                       int         nX
                       );

Inputs X : Pointer to vector components

nX : Dimension of vector

Output None

Return The minimum element by index of the input vector 

Description This function calculates the minimum element by index of a
vector. The input vector components are 16 bit real values
and are halfword aligned.

Pseudo code

{
   frac16 element = 0.99999999999999;
   int i;

   for (i = 0;i < nX;i++)
   {
      if (element > X[i])
      {
          element = X[i];
      }
   }
   i = 0;
   while (element != X[i])
   { 
      i++;   
   }

   return i;
}

Techniques None

Assumptions None
User’s Manual 4-97 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-24 Minimum element by index 

VecMinIdx Vector Operation - Minimum Element by index of a 
vector (cont’d)

X[1]

.

.

.

.

.

X[0]

X[size]

Min>x[0] Min=X[0], index=i

Min>x[1]

Min>x[size]

Min=X[1], index=i

Min=X[size], index=i

Return index

Yes

No

aX
User’s Manual 4-98 V 1.2, 2000-01



 Function Descriptions
Implementation The Vector Minimum by Index function uses the min.h and 
eq.h instructions to optimally find the minimum value in the 
array. The min.h instruction checks the two 32 bit registers 
and returns the smaller 2 words among them into another 
register thereby does two comparison and movement of data 
in one go. Similarly the eq.h checks if the value is equal 
among the two registers, this is used here to find the smaller 
value between the two words of a same 32 bit register finally, 
which is found to be in the minimum pair register after the 
computation of minimum element. Since the min.h does two 
comparisons, the loop count is reduced by half. 
The final part of the function is to calculate the index of the 
minimum element, this is done by initializing a index variable 
and is kept on incrementing until the minimum element found 
matches with one of the array’s element, odd array size is 
separately taken care.

Example Trilib\Example\Tasking\Vectors\expVect.c, expVect.cpp

Trilib\Example\GreenHills\Vectors\expVect.cpp, expVect.c

Trilib\Example\GNU\Vectors\expVect.c

Cycle Count
(Best)

(Worst)

Code Size 98 bytes

VecMinIdx Vector Operation - Minimum Element by index of a 
vector (cont’d)

4 2
nX
4

------- 1+× 3 2
1
2
---× 

  2+ + + +

4 2
nX
4

------- 1+× 3 2
nX
2

-------× 
  2+ + + +
User’s Manual 4-99 V 1.2, 2000-01



 Function Descriptions
VecMaxVal Vector Operation - Maximum Element by value of a 
vector

Signature int VecMaxVal(DataS   *X, 
                        int         nX
                        );

Inputs X : Pointer to vector components

nX : Dimension of vector

Output None

Return The maximum element by value of the input vector 

Description This function calculates the maximum element by value of a
vector. The input vector components are 16 bit real values
and are halfword aligned.

Pseudo code

{
   frac16 element = -1.0;
   int i;

   for (i = 0;i < nX ;i++)
   {
      if (element < X[i])
      {
         element = X[i];
      }
   }
   return element;
}

Techniques None

Assumptions None
User’s Manual 4-100 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-25 Maximum element by value 

VecMaxVal Vector Operation - Maximum Element by value of a 
vector (cont’d)

X[1]

.

.

.

.

.

X[0]

X[size]

Max<x[0] Max=X[0]

Max<x[1]

Max<x[size]

Max=X[1]

Max=X[size]

Return Max

Yes

No

aX
User’s Manual 4-101 V 1.2, 2000-01



 Function Descriptions
Implementation The Vector Maximum by value function uses the max.h and 
eq.h instructions to optimally find the maximum value in the 
array. The max.h instruction checks the two 32 bit registers 
and returns the bigger 2 words among them into another 
register thereby does two comparison and movement of data 
in one go. Similarly the eq.h checks if the value is equal 
among the two registers, this is used here to find the greater 
value between the two words of a same 32 bit register finally, 
which is found to be in the maximum pair register after the 
computation of maximum element. Since the max.h does two 
comparisons, the loop count is reduced by half. It returns the 
maximum value among the two in the maximum element 
register.

Example Trilib\Example\Tasking\Vectors\expVect.c, expVect.cpp

Trilib\Example\GreenHills\Vectors\expVect.cpp, expVect.c

Trilib\Example\GNU\Vectors\expVect.c

Cycle Count
(Best)

(Worst)

Code Size 56 bytes

VecMaxVal Vector Operation - Maximum Element by value of a 
vector (cont’d)

3 2
nX
4

------- 1+× 5+ +

3 2
nX
4

------- 1+× 7+ +
User’s Manual 4-102 V 1.2, 2000-01



 Function Descriptions
VecMinVal Vector Operation - Minimum Element by value of a 
vector

Signature int VecMinVal(DataS    *X, 
                       int          nX
                       );

Inputs X : Pointer to vector components

nX : Dimension of vector

Output None

Return The minimum element by value of the input vector 

Description This function calculates the minimum element by value of a
vector. The input vector components are 16 bit real values
and are halfword aligned.

Pseudo code

{
   frac16 element = 0.999999999;
   int i;

   for (i = 0;i < nX;i++)
   {
      if (element > X[i])
      {
         element = X[i];
      }
   }
   return element;
}

Techniques None

Assumptions None
User’s Manual 4-103 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-26 Minimum element by value 

VecMinVal Vector Operation - Minimum Element by value of a 
vector (cont’d)

X[1]

.

.

.

.

.

X[0]

X[size]

Min>x[0] Min=X[0]

Min>x[1]

Min>x[size]

Min=X[1]

Min=X[size]

Return Min

Yes

No

aX
User’s Manual 4-104 V 1.2, 2000-01



 Function Descriptions
Implementation The Vector Minimum by value function uses the min.h and 
eq.h instructions to optimally find the minimum value in the 
array. The min.h instruction checks the two 32 bit registers 
and returns the smaller 2 words among them into another 
register thereby does two comparison and movement of data 
in one go. Similarly the eq.h checks if the value is equal 
among the two registers, this is used here to find the smaller 
value between the two words of a same 32 bit register finally, 
which is found to be in the minimum pair register after the 
computation of minimum element. Since the min.h does two 
comparisons, the loop count is reduced by half. It returns the 
minimum value among the two in the minimum element 
register.

Example Trilib\Example\Tasking\Vectors\expVect.c, expVect.cpp

Trilib\Example\GreenHills\Vectors\expVect.cpp, expVect.c

Trilib\Example\GNU\Vectors\expVect.c

Cycle Count
(Best)

(Worst)

Code Size 56 bytes

VecMinVal Vector Operation - Minimum Element by value of a 
vector (cont’d)

3 2
nX
4

------- 1+× 5+ +

3 2
nX
4

------- 1+× 7+ +
User’s Manual 4-105 V 1.2, 2000-01



 Function Descriptions
4.4 FIR Filters

4.4.1 Normal FIR

The FIR (Finite Impulse Response) filter, as its name suggests, will always have a finite
duration of non-zero output values for given finite duration of non-zero input values. FIR
filters use only current and past input samples, and none of the filter’s previous output
samples, to obtain a current output sample value.

For causal FIR systems, the system function has only zeros (except for poles at z=0).
The FIR filter can be realized in transversal, cascade and lattice forms. The implemented
structure is of transversal type, which is realized by a tapped delay line. In case of FIR,
delay line stores the past input values. The input x(n) for the current calculation will
become x(n-1) for the next calculation. The output from each tap is summed to generate
the filter output. For a general nH tap FIR filter, the difference equation is

[4.39]

where,

The filter coefficients, which decide the scaling of current and past input samples stored
in the delay line, define the filter response.

The transfer function of the filter in Z-transform is 

[4.40]

X(n) : the filter input for nth sample

R(n) : output of the filter for nth sample

Hi : filter coefficients

nH : filter order

R n( ) Hi X n i–( )⋅

i 0=

nH 1–

∑=

H z[ ] R z[ ]
X z[ ]
------------ Hi Z

i–⋅

i 0=

nH 1–

∑= =
User’s Manual 4-106 V 1.2, 2000-01



 Function Descriptions
   

Figure 4-27 Block Diagram of the FIR Filter

4.4.1.1 Descriptions

The following Normal FIR filter functions are described.

• Normal, Arbitrary number of coefficients, Sample processing
• Normal, Arbitrary number of coefficients, Block processing
• Normal, coefficients - multiple of 4, Sample processing
• Normal, coefficients - multiple of 4, Block processing

 

Delay Line

+

Z-1

X

Z-1

X X
H0 H1 H nH-1

X(n)
(Filter Input)

X(n) X(n-1) X(n-nH+1)

R(n)
(Filter Output)

Z-1
User’s Manual 4-107 V 1.2, 2000-01



 Function Descriptions
Fir_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Sample processing

Signature DataS Fir_16(DataS             X,
                      DataS             *H,
                      cptrDataS       *DLY
                      );

Inputs X : Real input value

H : Pointer to Coeff-Buffer of size nH

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct 

Output DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

Return R : Output value of the filter (48-bit 
value converted to 16-bit with 
saturation)

Description The implementation of FIR filter uses transversal structure 
(direct form). A single input is processed at a time and output 
for every sample is returned. The filter operates on 16-bit real 
input, 16-bit coefficients and gives 16-bit real output. The 
number of coefficients given by the user is arbitrary. Circular 
buffer addressing mode is used for delay line. Coefficient 
buffer is halfword aligned. Delay line buffer is doubleword 
aligned. 
User’s Manual 4-108 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;        //Filter Result
   int j,k=0;
   frac16circ *aDLY = &DLY;  
                      //ptr to Circ-ptr of Delay-Buffer 

   *DLY = X;          //Store input value in Delay-Buffer at 
                      //the position of the oldest value
   acc = 0.0;
   if(nH%2 == 0)      //even coefficients
   {
   //’n’ in the comments refers current instant
   //The index i,j of X(i),H(j)(in the comments) are valid 
   //for first loop iteration
   //For each next loop i,j should be decremented and 
   //incremented by 2 respectively.

      for(j=0; j<nH/2; j++)
      {
         acc = acc + (frac64)(*(H+k) * (*(DLY+k)) + 
                      (*(H+k+1))* (*(DLY+k+1)));
                      //acc += X(n)*H(0) + X(n-1)*H(1)
         k=k+2;
      }

   }
   else               //odd coefficients
   {
   //’n’ in the comments refers current instant
   //The index i,j of X(i),H(j)(in the comments) are valid 
   //for first loop iteration.
   //For each next loop i,j should be decremented and 
   //incremented by 1 respectively.

Fir_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Sample processing (cont’d)
User’s Manual 4-109 V 1.2, 2000-01



 Function Descriptions
      for(j=0; j<nH; j++)
      {
         acc = acc + (frac64)(*(H+k) * (*(DLY+k)));
                      //acc += X(n)*H(0)
         k++;
      }

   }

   DLY--;             //Set DLY.index to the oldest value
                      //in Delay-Buffer
   aDLY=&DLY;         //store updated delay
   R = (frac16 sat)acc;
                      //Format the filter output from 48-bit
                      //to 16-bit saturated value

   return R;          //Filter output returned
}

Techniques • Loop unrolling, two taps/loop if coefficients are even, else
one tap/loop

• Use of packed data Load/Store
• Delay line implemented as circular buffer
• Use of dual MAC instruction for even coefficients and MAC

instruction for odd coefficients
• Intermediate results stored in 64 bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Inputs, outputs, coefficients and delay line are in 1Q15
format

• Filter order nH is not explicitly sent as an argument, instead
it is sent through the argument DLY as a size of circ-Delay-
Buffer

Fir_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Sample processing (cont’d)
User’s Manual 4-110 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-28 Fir_16

Fir_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Sample processing (cont’d)

1Q15 1Q15

Delay-Buffer

aH

aDLY caDLY

H1

.

.

.

.

.

H0

HnH-1

Coeff-Buffer

MAC (odd
number of

coefficients)

Dual MAC
(even

number of
coefficients)

doubleword
aligned

X

.

X(n-nH + 1)

X(n)

X(n-1)

X(n-2)

.

.

.

halfword
aligned
User’s Manual 4-111 V 1.2, 2000-01



 Function Descriptions
Implementation The FIR filter implemented structure is of transversal type, 
which is realized by a tapped delay line.

The FIR filter routine processes one sample at a time and 
returns the output of that sample. The input for which the 
output is to be calculated is sent as an argument to the 
function.

Implementation is different for even and odd coefficients.

Even number of coefficients: 

TriCore’s load word instruction loads the two delay line values 
and two coefficients in one cycle. Dual MAC instruction 
performs a pair of multiplications and additions according to 
the equation

[4.41]

By using a dual MAC in the tap loop, the loop count is brought
down by a factor of two. Here two taps are used during a
single pass and loop is unrolled for efficient pointer update of
delay line. Thus loop is executed (nH/2-1) times. 

Odd number of coefficients: 

TriCore’s load halfword instruction loads one delay line value 
and one coefficient in one cycle. MAC instruction performs 
one multiplication and one addition according to the equation

[4.42]

By using a MAC in the tap loop, the loop count remains nH.
Only one tap is used during a single pass and loop is unrolled
for efficient pointer update of delay line. Thus loop is executed
(nH-1) times.

Fir_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Sample processing (cont’d)

acc acc X n( ) H0 X n 1–( ) H1⋅+⋅+=

acc acc X n( ) H0⋅+=
User’s Manual 4-112 V 1.2, 2000-01



 Function Descriptions
The filter output R(n) is 16-bit saturated equivalent of acc
when the tap loop is executed fully.

For delay line, circular addressing mode is used which helps
in efficient delay update. The size of the circular Delay-Buffer
is equal to the filter order, i.e., the number of coefficients.
Circular buffer needs doubleword alignment. There is no
restriction on the number of coefficients.

Delay pointer in the memory note shows updated pointer after
tap loop is over. This points to the oldest value in the delay-
buffer which is replaced by new input value.

Example Trilib\Example\Tasking\Filters\FIR\expFir_16.c, 
expFir_16.cpp
Trilib\Example\GreenHills\Filters\FIR\expFir_16.cpp, 
expFir_16.c
Trilib\Example\GNU\Filters\FIR\expFir_16.c

Cycle Count With DSP 
Extensions

For even number of coefficients

Pre-kernel : 10

Kernel :

Post-kernel : 2+2

For odd number of coefficients

Pre-kernel : 8

Kernel :

Post-kernel : 2+2

Fir_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Sample processing (cont’d)

nH
2

------- 1– 2 2+×

nH 1–[ ] 2 2+×
User’s Manual 4-113 V 1.2, 2000-01



 Function Descriptions
Without DSP 
Extensions

For even number of coefficients

Pre-kernel : 10

Kernel : same as With DSP Extensions

Post-kernel : 3+2

For odd number of coefficients

Pre-kernel : 8

Kernel : same as With DSP Extensions

Post-kernel : 3+2

Code Size 110 bytes

Fir_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Sample processing (cont’d)
User’s Manual 4-114 V 1.2, 2000-01



 Function Descriptions
FirBlk_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Block processing

Signature void FirBlk_16(DataS          *X,
                        DataS          *R,
                        cptrDataS     H,
                        cptrDataS     *DLY,
                        int                 nX
                        ); 

Inputs X : Pointer to Input-Buffer

R : Pointer to Output-Buffer

H : Circular pointer of Coeff-Buffer of 
size nH

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct 

nX : Size of Input-Buffer

Outputs DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

R(nX) : Output-Buffer

Return None

Description The implementation of FIR filter uses transversal structure 
(direct form). The block of inputs are processed at a time and 
output for every sample is stored in the output array. The filter 
operates on 16-bit real input, 16-bit coefficients and gives 16-
bit real output. The number of coefficients given by user is 
arbitrary. Circular buffer addressing mode is used for 
coefficients and delay line. Both coefficient buffer and delay 
line buffer are doubleword aligned. The input buffer and the 
output buffer are halfword aligned.
User’s Manual 4-115 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;        //Filter Result
   int j,i,k;
   frac16circ *aDLY=&DLY;  
                      //ptr to Circ-ptr of Delay-Buffer 

   for(i=0; i<nX; i++)
   {
      *DLY = *X;      //Store input value in Delay-Buffer at 
                      //the position of the oldest value
      acc = 0.0;
      if(nH%2 == 0)
      {
      // ’n’ in the comments refers current instant
      //The index i,j of X(i),H(j)(in the comments) are 
      //valid for first loop iteration.
      //For each next loop i,j should be decremented 
      //and incremented by 2 respectively.

         for(j=0; j<nH/2; j++)
         {
            acc = acc + (frac64)(*(H+k) * (*(DLY+k)) + 
                                 (*(H+k+1)) * (*(DLY+k+1)));
                      //acc += X(n)*H(0) + X(n-1)*H(1)
            k=k+2;
         }
      }
      else
      {
      // ’n’ in the comments refers current instant
      //The index i,j of X(i),H(j)(in the comments) are 
      //valid for first loop iteration.
      //For each next loop i,j should be decremented and 
      //incremented by 1 respectively.

FirBlk_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Block processing (cont’d)
User’s Manual 4-116 V 1.2, 2000-01



 Function Descriptions
         for(j=0; j<nH; j++)
         {
            acc = acc + (frac64)(*(H+k) * (*(DLY+k)));
                      //acc += X(n)*H(0)
            k=k+1;
         }
      }
      DLY--;          //Set DLY.index to the oldest value
                      //in Delay-Buffer
      aDLY=&DLY;      // store updated delay
      *R++ = (frac16 sat)acc;
                      //Format the filter output from 48-bit
                      //to 16-bit saturated value
   }//end of indata loop
}

Techniques • Loop unrolling, two taps/loop if coefficients are even else
one tap/loop

• Use of packed data Load/Store
• Delay line implemented as circular buffer
• Coefficient buffer implemented as circular buffer
• Use of dual MAC instruction for even number of coefficients

and MAC instructions for odd number of coefficients
• Intermediate results stored in 64 bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Inputs, outputs, coefficients and delay line are in 1Q15
format

• Filter order nH is not explicitly sent as an argument, instead
it is sent through the argument DLY as a size of circ-Delay-
Buffer

FirBlk_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Block processing (cont’d)
User’s Manual 4-117 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-29 FirBlk_16

FirBlk_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Block processing (cont’d)

Input-Buffer
Output-Buffer

Delay-Buffer

Coeff-Buffer

aRaX
X(1)

.

.

X(n)

X(n+1)

.

X(0)

.

R(1)

.

.

R(n)

R(n + 1)

.

R(0)

.

aDLYcaDLY

MAC (odd
number of

coefficients)

H0

H1

.

.

.

HnH-1

1Q15

1Q15

1Q15

aHcaH

Dual MAC
(even

number of
coefficients)

doubleword
aligned

doubleword
aligned

halfword
aligned

halfword
aligned

.

X(n-nH+1)

X(n)

X(n-1)

X(n-2)

.

.

.

1Q15
User’s Manual 4-118 V 1.2, 2000-01



 Function Descriptions
Implementation This FIR filter routine processes a block of input values at a 
time. The pointer to the input buffer is sent as an argument to 
the function. The output is stored in output buffer, the starting 
address of which is also sent as an argument to the function.

Implementation details are same as Fir_16, except that the 
Coeff-Buffer is also circular and needs doubleword alignment. 
The size of the Coeff-Buffer is equal to the filter order, i.e., the 
number of coefficients. Because of circular addressing used 
for Coeff-Buffer, at the end of the tap loop coeff-pointer 
always points to H0, i.e., first coefficient which is needed for 
next instant. An additional loop is needed to calculate the 
output for every sample in the buffer. Hence, this loop is 
repeated as many times as the size of the input buffer.

Example Trilib\Example\Tasking\Filters\FIR\expFirBlk_16.c, 
expFirBlk_16.cpp
Trilib\Example\GreenHills\Filters\FIR\expFirBlk_16.cpp, 
expFirBlk_16.c
Trilib\Example\GNU\Filters\FIR\expFirBlk_16.c

Cycle Count With DSP 
Extensions

For even number of coefficients

Pre-loop : 9

Loop :
 

Post-loop : 1+2

For odd number of coefficients

Pre-loop : 6

Loop :  

Post-loop : 1+2

FirBlk_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Block processing (cont’d)

nX 5
nH
2

------- 1– 
  2 1+× 3+ +

 
 
 

×

+3

nX 5 nH 1–( ) 2 1+×[ ] 3+ +{ }×
+3
User’s Manual 4-119 V 1.2, 2000-01



 Function Descriptions
Without DSP 
Extensions

For even number of coefficients

Pre-loop : 11

Loop : same as With DSP Extensions 

Post-Loop : 1+2

For odd number of coefficients

Pre-loop : 8

Loop : same as With DSP Extensions

Post-loop : 1+2

Code Size 178 bytes

FirBlk_16 FIR Filter, Normal, Arbitrary number of coefficients, 
Block processing (cont’d)
User’s Manual 4-120 V 1.2, 2000-01



 Function Descriptions
Fir_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Sample processing

Signature DataS Fir_4_16(DataS             X,
                           DataS            *H,
                           cptrDataS      *DLY
                           );

Inputs X : Real input value

H : Pointer to Coeff-Buffer of size nH

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct 

Output DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

Return R : Output value of the filter (48-bit 
value converted to 16-bit with 
saturation)

Description The implementation of FIR filter uses transversal structure 
(direct form). The single input is processed at a time and 
output for every sample is returned. The filter operates on 16-
bit real input, 16-bit coefficients and gives 16-bit real output. 
The number of coefficients given by the user is multiple of 
four. Optimal implementation requires filter order to be 
multiple of four. Circular buffer addressing mode is used for 
delay line. Delay line buffer is doubleword aligned and it 
should be in internal memory. Coefficient-Buffer should be 
word aligned if it is in the external memory.
User’s Manual 4-121 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;        //Filter Result
   int j,k;
   frac16circ *aDLY=&DLY; 
                      //ptr to Circ-ptr of Delay-Buffer 

   *DLY = X;          //Store input value in Delay-Buffer at 
                      //the position of the oldest value
   acc = 0.0;
   //’n’ in the comments refers to current instant
   //The index i,j of X(i),H(j)(in the comments) are valid 
   //for first loop iteration
   //For each next loop i,j should be decremented and 
   //incremented by 4 respectively.

   for(j=0; j<nH/4; j++)
   {
      acc = acc + (frac64)(*(H+k)*(*(DLY+k)) + (*(H+k+1)) * (*(DLY+k+1)));
                      //acc += X(n)*H(0) + X(n-1)*H(1) 
      acc = acc + (frac64)(*(H+k+2) * (*(DLY+k+2))+ 
                           (*(H+k+3)) * (*(DLY+k+3)));
                      //acc += X(n-2)*H(2) + X(n-3)*H(3) 
      k=k+4;
   }

   DLY--;             //Set DLY.index to the oldest value
                      //in Delay-Buffer
   aDLY=&DLY;         //store updated delay

   R = (frac16 sat)acc;
                      //Format the filter output from 48-bit
                      //to 16-bit saturated value
   return R;          //Filter output returned
}

Techniques • Loop unrolling, four taps/loop
• Use of packed data Load/Store
• Delay line implemented as circular buffer
• Use of dual MAC instructions
• Intermediate results stored in 64-bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Fir_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Sample processing (cont’d)
User’s Manual 4-122 V 1.2, 2000-01



 Function Descriptions
Assumptions • Filter size must be multiple of 4 and minimum filter order is
eight

• Inputs, outputs, coefficients and delay line are in 1Q15
format 

• Filter order nH is not explicitly sent as an argument, instead
it is sent through the argument DLY as a size of circ-Delay-
Buffer

• Delay-Buffer is in internal memory

Memory Note

Figure 4-30 Fir_4_16

Fir_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Sample processing (cont’d)

aDLY

doubleword
aligned

(Must be in IntMem)

Delay-Buffer Coeff-Buffer

Dual MAC

aH

caDLY

H1

.

.

.

.

.

H0

HnH-1

X

.

X(n-nH + 1)

X(n)

X(n-1)

X(n-2)

.

.

.

1Q151Q15
User’s Manual 4-123 V 1.2, 2000-01



 Function Descriptions
Implementation The FIR filter implemented structure is of transversal type, 
which is realized by a tapped delay line.

The FIR filter routine processes one sample at a time and 
returns the output of that sample. The input for which the 
output is to be calculated is sent as an argument to the 
function.

TriCore’s load doubleword instruction loads four delay line 
values and four coefficients in one cycle. Each dual MAC 
instruction performs a pair of multiplications and additions 
according to the equation

[4.43]

Thus by using two dual MACs in the tap loop, the loop count
is brought down by a factor of four. Here four taps are used
during a single pass and loop is unrolled for efficient pointer
update of delay line. Thus loop is executed (nH/4-1) times.
The filter output R(n) is 16-bit saturated equivalent of acc
when the tap loop is fully executed.

To support load doubleword instruction, coeff-buffer should
be word aligned if it is in the external memory and halfword
aligned if it is in the internal memory. For delay line, circular
addressing mode is used which helps in efficient delay
update. The size of the circular Delay buffer is equal to the
filter order, i.e., the number of coefficients. Circular buffer
needs doubleword alignment and to use load doubleword
instruction, size of the buffer should be multiple of eight bytes.
This implies that the coefficients should be multiple of four.

Delay pointer in the memory note shows updated pointer after
tap loop is over. This points to the oldest value in the Delay-
Buffer which is replaced by new input value.

Note: To Use load doubleword instruction for the delay line
the Delay-Buffer should be in internal memory only.

Fir_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Sample processing (cont’d)

acc acc X n( ) H0 X n 1–( ) H1⋅+⋅+=
User’s Manual 4-124 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Filters\FIR\expFir_4_16.c, 
expFir_4_16.cpp
Trilib\Example\GreenHills\Filters\FIR\expFir_4_16.cpp, 
expFir_4_16.c
Trilib\Example\GNU\Filters\FIR\expFir_4_16.c

Cycle Count With DSP 
Extensions

Pre-kernel :  7

Kernel :  

if nH > 8

if nH = 8

Post-kernel : 3+2

Without DSP 
Extensions

Pre-kernel : 7

Kernel : same as With DSP Extensions

Post-kernel : 4+2

Code Size 80 bytes

Fir_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Sample processing (cont’d)

nH
4

------- 1– 2 2+×

nH
4

------- 1– 2 1+×
User’s Manual 4-125 V 1.2, 2000-01



 Function Descriptions
FirBlk_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Block processing

Signature void FirBlk_4_16(DataS        *X,
                           DataS         *R,
                           cptrDataS    H,
                           cptrDataS   *DLY,
                           int               nX
                           ); 

Inputs X : Pointer to Input-Buffer

R : Pointer to Output-Buffer

H : Circular pointer of Coeff-Buffer of 
size nH

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct

nX : Size of Input-Buffer

Output DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

R(nX) : Output-Buffer

Return None

Description The implementation of FIR filter uses transversal structure 
(direct form). The block of inputs are processed at a time and 
output for every sample is stored in the output array. The filter 
operates on 16-bit real input, 16-bit coefficients and gives 16-
bit real output. The number of coefficients given by user is 
multiple of four. Optimal implementation requires filter order to 
be multiple of four. Circular buffer addressing mode is used for 
coefficients and delay line. Both coefficient buffer and delay 
line buffer are doubleword aligned. Input and output buffer are 
halfword aligned.
User’s Manual 4-126 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;        //Filter Result
   int j,i,k;
   frac16circ *aDLY=&DLY;  
                      //Ptr to Circ-ptr of Delay-Buffer 
   frac16circ *H;     //Circ-ptr of Coeff-Buffer 

   for(i=0; i<nX; i++)
   {
      *DLY = *X;      //Store input value in Delay-Buffer at 
                      //the position of the oldest value
      acc = 0.0;    
      //’n’ in the comments refers to current instant
      //The index i,j of X(i),H(j)(in the comments) are 
      //valid for first loop iteration
      //For each next loop i,j should be decremented 
      //and incremented by 4 resp.

      for(j=0; j<nH/4; j++)
      {
          acc = acc + (frac64)(*(H+k) * (*(DLY+k)) + 
                               (*(H+k+1)) * (*(DLY+k+1)));
                      //acc += X(n)*H(0) + X(n-1)*H(1)
          acc = acc + (frac64)(*(H+k+2) * (*(DLY+k+2)) + 
                               (*(H+k+3)) * (*(DLY+k+3)));
                      //acc += X(n-2)*H(2) + X(n-3)*H(3)
          k=k+4;
      }

      DLY--;          //Set DLY.index to the oldest value in Delay-Buffer
      aDLY = &DLY;    //store updated delay
      *R++ = (frac16 sat)acc;
                      //Format the filter output from 48-bit
                      //to 16-bit saturated value
   } 
}

FirBlk_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Block processing (cont’d)
User’s Manual 4-127 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop unrolling, four taps/loop
• Use of packed data Load/Store
• Delay line implemented as circular buffer
• Coefficient buffer implemented as circular buffer
• Use of dual MAC instructions
• Intermediate results stored in 64-bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Filter order is a multiple of four and minimum filter order is
eight

• Inputs, outputs, coefficients and delay line are in 1Q15
format 

• Filter order nH is not explicitly sent as an argument, instead
it is sent through the argument DLY as a size of circ-Delay-
Buffer

• Delay-Buffer is in internal memory

FirBlk_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Block processing (cont’d)
User’s Manual 4-128 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-31 Fir_Blk_4_16

FirBlk_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Block processing (cont’d)

Input-Buffer Output-Buffer

Delay-Buffer

Coeff-Buffer

aRaX
X(1)

.

.

X(n)

X(n+1)

.

X(0)

.

R(1)

.

.

R(n)

R(n + 1)

.

R(0)

.
aDLYcaDLY

.

X(n-nH+1)

X(n)

X(n-1)

X(n-2)

.

.

.

Dual
MAC

H0

H1

.

.

.

HnH-1

1Q15

1Q15

1Q15

aHcaH

halfword
aligned

doubleword
aligned

1Q15

doubleword
aligned

halfword
aligned

(Must be in IntMem)
User’s Manual 4-129 V 1.2, 2000-01



 Function Descriptions
Implementation This FIR filter routine processes a block of input values at a 
time. The pointer to the input buffer is sent as an argument to 
the function. The output is stored in output buffer, the starting 
address of which is also sent as an argument to the function.

Implementation details are same as Fir_4_16, except that the 
Coeff-Buffer is also circular and needs doubleword alignment. 
The size of the Coeff-Buffer is equal to the filter order, i.e., the 
number of coefficients. Because of circular addressing used 
for Coeff-Buffer, at the end of the tap loop coeff-pointer 
always points to H0, i.e., first coefficient which is needed for 
next instant. An additional loop is needed to calculate the 
output for every sample in the buffer. Hence, this loop is 
repeated as many times as the size of the input buffer.

Note: To Use load doubleword instruction for the delay line
the Delay-Buffer should be in internal memory only.

Example Trilib\Example\Tasking\Filters\FIR\expFirBlk_4_16.c, 
expFirBlk_4_16.cpp
Trilib\Example\GreenHills\Filters\FIR\expFirBlk_4_16.cpp, 
expFirBlk_4_16.c
Trilib\Example\GNU\Filters\FIR\expFirBlk_4_16.c

Cycle Count With DSP 
Extensions

Pre-loop : 5

Loop :

Post-loop : 1+2

Without DSP 
Extensions

Pre-loop : 7

FirBlk_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Block processing (cont’d)

nX 5 2
nH
4

------- 1– 
  1+× 4+ +

 
 
 

×

+ 3
User’s Manual 4-130 V 1.2, 2000-01



 Function Descriptions
4.4.2 Symmetric FIR

FIR filters with symmetrical Finite Impulse Response are called Symmetrical FIR filters.
Such filters find use in signal processing applications such as speech processing where
linear phase response is required to avoid phase distortion.

4.4.2.1 Descriptions

The following Symmetric FIR filter functions are described.

• Symmetric, Arbitrary number of coefficients, Sample processing
• Symmetric, Arbitrary number of coefficients, Block processing
• Symmetric, coefficients - multiple of 4, Sample processing
• Symmetric, coefficients - multiple of 4, Block processing

Loop : same as With DSP Extensions

Post-loop : 1+2

Code Size 104 bytes

FirBlk_4_16 FIR Filter, Normal, Coefficients - multiple of four, 
Block processing (cont’d)
User’s Manual 4-131 V 1.2, 2000-01



 Function Descriptions
FirSym_16 FIR Filter, Symmetric, Arbitrary number of 
coefficients, Sample processing

Signature DataS FirSym_16(DataS            X,
                             DataS            *H,
                             cptrDataS      *DLY
                             );

Inputs X : Real input value

H : Pointer to Coeff-Buffer of size nH/2

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct 

Output DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

Return R : Output value of the filter (48-bit 
value converted to 16-bit with 
saturation)

Description The implementation of FIR filter uses transversal structure 
(direct form). A single input is processed at a time and output 
for that sample is returned. The filter operates on 16-bit real 
input, 16-bit coefficients and returns 16-bit real output. The 
number of coefficients given by the user is arbitrary and half 
of the filter order. Circular buffer addressing mode is used for 
delay line. Delay line buffer is double word aligned. Coeff-
Buffer is halfword aligned. The Delay-Buffer is twice the size 
of Coeff-Buffer.
User’s Manual 4-132 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;        //Filter Result
   int j,k;
   frac16circ *aDLY=&DLY1;
                      //ptr to Circ-ptr of Delay-Buffer
 
   DLY2 = DLY1-1;     //Ptr to X(n-nH+1)
   aDLY=&DLY2;        //store index to the oldest value for next instant
   *DLY1 = X;         //Store input value in Delay-Buffer at 
                      //the position of the oldest value for current instant
   acc = 0.0;

   //The index i,j,k of X1(i),X2(j),H(k)(in the comments) 
   //are valid for first loop iteration.
   //For each next loop i,j,k should be decremented, incremented and  
   //incremented by 1 respectively.
   //’n’ in the comments refers to current instant

   for(j=0; j<nH/2; j++)
   {
      acc = acc + (frac64)(*(H+k) * (*(DLY1+k)));
                      //acc += X1(n) * H(0) 
      acc = acc + (frac64)(*(H+k) * (*(DLY2-k)));
                      //acc += X2(n-nH+1) * H(0)
      k=k+1;
   }
   DLY1=*aDLY;        //Set DLY.index to the oldest value
                      //in Delay-Buffer for next instant

   R = (frac16 sat)acc;
                      //Format the filter output from 48-bit
                      //to 16-bit saturated value

   return R;          //Filter output is returned
}

FirSym_16 FIR Filter, Symmetric, Arbitrary number of 
coefficients, Sample processing (cont’d)
User’s Manual 4-133 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop unrolling, two taps/loop
• Use of packed data Load/Store
• Delay line implemented as circular buffer
• Use of MAC instructions
• Intermediate results stored in 64-bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Inputs, outputs, coefficients and delay line are in 1Q15
format 

• Filter order nH is not explicitly sent as an argument, instead
it is sent through the argument DLY as a size of circ-Delay-
Buffer

Memory Note

Figure 4-32 FirSym_16

FirSym_16 FIR Filter, Symmetric, Arbitrary number of 
coefficients, Sample processing (cont’d)

Coeff-Buffer

aH

aDLY2caDLY2

MAC

1Q15
doubleword

aligned

H0

H1

.

HnH/2 -1

aDLY1 caDLY1

1Q15

.

X(n-nH+2)

X(n-nH+1)

X(n)

X(n-1)

.

.

X(n-nH/2+1)

x(n-nH/2)

.

nH/2

MAC
X

halfword
aligned

Delay-Buffer
User’s Manual 4-134 V 1.2, 2000-01



 Function Descriptions
Implementation The FIR filter implemented structure is of transversal type, 
which is realized by a tapped delay line.

The FIR filter routine processes one sample at a time and 
returns the output of that sample. The input for which the 
output is to be calculated is sent as an argument to the 
function.

TriCore’s load halfword instruction loads the one delay line 
value and one coefficient in one cycle each. For delay line, 
circular addressing mode is used. Two pointers are initialized 
for circular delay line, one points to X(n), which is incremented 
and the other points to X(n-nH+1), which is decremented to 
access all the delay line values. Each pointer accesses nH/2 
values. 

In a symmetric FIR filter, X(n) and X(n-nH+1) get multiplied 
with the same coefficient H0. This fact can be made use of to 
reduce the number of loads for coefficients. So, for the first 
pass in tap loop, one delay line pointer loads X(n) and the 
other pointer loads X(n-nH+1) by using load halfword 
instruction.

MAC instruction performs multiplication and addition. Two 
MACs are used in the tap loop, which for the first pass perform

[4.44]

Here two taps are used during a single pass and loop is
unrolled to save cycle. Thus loop is executed (nH/2-1) times.
The filter output R(n) is 16-bit saturated equivalent of acc
when the tap loop is fully executed.

As Delay-Buffer is circular, the delay line update is done
efficiently. The size of the circular Delay-Buffer is equal to the
filter order, i.e., twice the number of given coefficients.
Circular buffer needs doubleword alignment and to use load
halfword instruction, size of the buffer should be multiple of
two bytes. There is no restriction on the number of
coefficients.

FirSym_16 FIR Filter, Symmetric, Arbitrary number of 
coefficients, Sample processing (cont’d)

acc acc X n( ) H0⋅+=

acc acc X n nH– 1+( ) H0⋅+=
User’s Manual 4-135 V 1.2, 2000-01



 Function Descriptions
Delay pointers in the memory note show updated pointers for
the next iteration. caDLY1 points to the oldest value in the
Delay-Buffer which is replaced by new input value.

Example Trilib\Example\Tasking\Filters\FIR\expFirSym_16.c, 
expFirSym_16.cpp
Trilib\Example\GreenHills\Filters\FIR\expFirSym_16.cpp, 
expFirSym_16.c
Trilib\Example\GNU\Filters\FIR\expFirSym_16.c

Cycle Count With DSP 
Extensions

Pre-kernel : 9

Kernel :  

Post-kernel : 4+2

Without DSP 
Extensions

Pre-kernel : 9

Kernel : same as With DSP Extensions

Post-kernel : 5+2

Code Size 88 bytes

FirSym_16 FIR Filter, Symmetric, Arbitrary number of 
coefficients, Sample processing (cont’d)

nH
2

------- 1– 3 2+×
User’s Manual 4-136 V 1.2, 2000-01



 Function Descriptions
FirSymBlk_16 FIR Filter, Symmetric, Arbitrary number of 
coefficients, Block processing

Signature void FirSymBlk_16(DataS            *X,
                              DataS            *R,
                              DataS            *H,
                              cptrDataS      *DLY,
                              int                  nX
                              ); 

Inputs X : Pointer to Input-Buffer of size nX

R : Pointer to Output-Buffer of size nX

H : Pointer to Coeff-Buffer of size nH/2

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct

nX : Number of input samples

Outputs DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

R(nX) : Output-Buffer

Return None

Description The implementation of FIR filter uses transversal structure 
(direct form). A block of inputs are processed at a time and 
output for every sample is stored in the output array. The filter 
operates on 16-bit real input, 16-bit coefficients and gives 16-
bit real output. The number of coefficients given by the user is 
arbitrary and half of the filter order. Circular buffer addressing 
mode is used for delay line. Delay line buffer is doubleword 
aligned. Coefficient, Input and output buffer are halfword 
aligned. The Delay-Buffer is twice the size of Coeff-Buffer.
User’s Manual 4-137 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;        //Filter Result
   int i,j,k;
   frac16circ *aDLY=&DLY1;
                      //ptr to Circ-ptr of Delay-Buffer
   frac16 *H0;        //Ptr to Coeff-Buffer
 
   H0 = H;            //store coeff-buffer ptr
   DLY2 = DLY1-1;     //Ptr to X(n-nH+1)
   aDLY = &DLY2;      //store index to the oldest value of next instant
   *DLY1 = X;         //Store input value in Delay-Buffer at 
                      //the position of the oldest value of current instant
   for(i=0; i<nX; i++)
   {
      acc = 0.0;
      k=0;

      //The index i,j,k of X1(i),X2(j),H(k)(in the comments) 
      //are valid for first loop iteration.
      // For each next loop i,j,k should be decremented, incremented and 
      //incremented by 1 respectively.
      //’n’ in the comments refers to current instant

      for(j=0; j<nH/2; j++)
      {
         acc = acc + (frac64)(*(H+k) * (*(DLY1+k)));
                      //acc += X1(n) * H(0)
         acc = acc + (frac64)(*(H+k) * (*(DLY2-k)));
                      //acc += X2(n-nH+1) * H(0)
         k=k+1;
      }
      DLY1 = *aDLY;   //Set DLY.index to the oldest value in Delay-Buffer
      H = H0;         //initialize coeff-ptr

      *R++ = (frac16 sat)acc;
                      //Format the filter output from 48-bit
                      //to 16-bit saturated value
   }
}

FirSymBlk_16 FIR Filter, Symmetric, Arbitrary number of 
coefficients, Block processing (cont’d)
User’s Manual 4-138 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop unrolling, two taps/loop
• Use of packed data Load/Store
• Delay line implemented as circular buffer
• Use of MAC instructions
• Intermediate results stored in 64-bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Inputs, outputs, coefficients and delay line are in 1Q15
format 

• Filter order nH is not explicitly sent as an argument, instead
it is sent through the argument DLY as a size of circ-Delay-
Buffer

FirSymBlk_16 FIR Filter, Symmetric, Arbitrary number of 
coefficients, Block processing (cont’d)
User’s Manual 4-139 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-33 FirSymBlk_16

FirSymBlk_16 FIR Filter, Symmetric, Arbitrary number of 
coefficients, Block processing (cont’d)

Input-Buffer Output-Buffer

Delay-Buffer

Coeff-Buffer

aR

R(1)

.

.

R(n)

R(n + 1)

.

R(0)

.

aH

aDLY2caDLY2

MAC

1Q15
doubleword

aligned

H0

H1

.

HnH/2 -1

aDLY1 caDLY1

aX

1Q15 1Q15

1Q15

.

X(n-nH+2)

X(n-nH+1)

X(n)

X(n-1)

.

.

X(n-nH/2+1)

X(n-nH/2)

.

X(1)

.

.

X(n)

X(n+1)

.

X(0)

.

nH/2

MAC

halfword
aligned

halfword
aligned

halfword
aligned
User’s Manual 4-140 V 1.2, 2000-01



 Function Descriptions
Implementation This symmetric FIR filter routine processes a block of input 
values at a time. The pointer to the input buffer is sent as an 
argument to the function. The output is stored in output buffer, 
the starting address of which is also sent as an argument to 
the function.

Implementation details are same as FirSym_16, except that 
the Coeff-Buffer pointer is stored for next iteration and an 
additional loop is needed to calculate the output for every 
sample in the buffer. Hence, this loop is repeated as many 
times as the size of the input buffer.

Example Trilib\Example\Tasking\Filters\FIR\expFirSymBlk_16.c, 
expFirSymBlk_16.cpp
Trilib\Example\GreenHills\Filters\FIR
\expFirSymBlk_16.cpp, expFirSymBlk_16.c
Trilib\Example\GNU\Filters\FIR\expFirSymBlk_16.c

Cycle Count Pre-loop : 4

Loop :
 

Post-loop : 0+2

Code Size 112 bytes

FirSymBlk_16 FIR Filter, Symmetric, Arbitrary number of 
coefficients, Block processing (cont’d)

nX 8 3
nH
2

------- 1– 
  1+× 5+ +

 
 
 

×

+3
User’s Manual 4-141 V 1.2, 2000-01



 Function Descriptions
FirSym_4_16 FIR Filter, Symmetric, Coefficients - multiple of four, 
Sample processing

Signature DataS FirSym_4_16(DataS           X,
                                 DataS           *H,
                                 cptrDataS     *DLY
                                 );

Inputs X : Real input value

H : Pointer to Coeff-Buffer of size nH/2

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct 

Output DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

Return R : Output value of the filter (48-bit 
value converted to 16-bit with 
saturation)

Description The implementation of FIR filter uses transversal structure 
(direct form). A single input is processed at a time and output 
for that sample is returned. The filter operates on 16-bit real 
input, 16-bit coefficients and returns 16-bit real output. The 
filter order should be a multiple of four. Therefore number of 
coefficients given by the user should be even and half of the 
filter order. Optimal implementation requires filter order to be 
multiple of four. Circular buffer addressing mode is used for 
delay line. Delay line buffer is double word aligned. Coefficient 
buffer is halfword aligned. The Delay-Buffer is twice the size 
of Coeff-Buffer.
User’s Manual 4-142 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;        //Filter Result
   int j,k;
   frac16circ  *aDLY=&DLY1;
                      //ptr to Circ-ptr of Delay-Buffer
   DLY2 = DLY1-1;
   aDLY=&DLY2;        //store index to the oldest value for next instant
   DLY2 = DLY2-1;     //Ptr to X(n-nH+2)
   *DLY1 = X;         //Store input value in Delay-Buffer at 
                      //the position of the oldest value
   acc = 0.0;

   //The index i,j,k of X1(i),X2(j),H(k)(in the comments) 
   //are valid for first loop iteration.
   //For each next loop i,j,k should be decremented,incremented and
   //incremented by 2 resp.
   //’n’ in the comments refers to current instant
   for(j=0; j<nH/2; j++)
   {
      acc = acc + (frac64)(*(H+k) * (*(DLY1+k)) + 
                          (*(H+k+1)) * (*(DLY1+k+1)));
                      //acc += X1(n) * H(0) + X1(n-1) * H(1)
      acc = acc + (frac64)(*(H+k) * (*(DLY2-k)) + (*(H+k+1)) * 
                           (*(DLY2-k-1)));
                      //acc += X2(n-nH+1) * H(0) +  X2(n-nH+2) * H(1) ||
      k=k+2;
   }
   DLY1=*aDLY;        //Set DLY.index to the oldest value
                      //in Delay-Buffer for next instant

   R = (frac16 sat)acc;
                      //Format the filter output from 48-bit
                      //to 16-bit saturated value

   return R;          //Filter output is returned
}

FirSym_4_16 FIR Filter, Symmetric, Coefficients - multiple of four, 
Sample processing (cont’d)
User’s Manual 4-143 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop unrolling, four taps/loop
• Use of packed data Load/Store
• Delay line implemented as circular buffer
• Use of dual MAC instructions
• Intermediate results stored in 64-bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Filter order is a multiple of four
• Inputs, outputs, coefficients and delay line are in 1Q15

format 
• Filter order nH is not explicitly sent as an argument, instead

it is sent through the argument DLY as a size of circ-Delay-
Buffer

Memory Note

Figure 4-34 FirSym_4_16

FirSym_4_16 FIR Filter, Symmetric, Coefficients - multiple of four, 
Sample processing (cont’d)

Delay-Buffer

Coeff-Buffer

aH

aDLY2 caDLY2

MAC

1Q15
doubleword

aligned

H0

H1

.

HnH/2 -1

aDLY1 caDLY1

1Q15

.

X(n-nH+2)

X(n-nH+1)

X(n)

X(n-1)

.

.

X(n-nH/2+1)

x(n-nH/2)

.

nH

MAC
X

halfword
aligned
User’s Manual 4-144 V 1.2, 2000-01



 Function Descriptions
Implementation The FIR filter implemented structure is of transversal type, 
which is realized as a tapped delay line.

The FIR filter routine processes one sample at a time and 
returns the output of that sample. The input for which the 
output is to be calculated is sent as an argument to the 
function.

TriCore’s load word instruction loads the two delay line values 
and two coefficients in one cycle. For delay line, circular 
addressing mode is used. Two pointers are initialized for 
circular delay line, one points to X(n), which is incremented 
and the other points to X(n-nH+2), which is decremented to 
access all the delay line values. Each pointer accesses nH/2 
values. 

In a symmetric FIR filter, X(n) and X(n-nH+1) get multiplied 
with the same coefficient H0. This fact can be made use of to 
reduce the number of loads for coefficients. So, for the first 
pass in tap loop, one delay line pointer loads X(n), X(n-1) and 
the other pointer loads X(n-nH+1), X(n-nH+2) by using load 
word instruction.

Dual MAC instruction performs a pair of multiplication and 
additions. Two dual MACs are used in the tap loop, which for 
the first pass perform

[4.45]

Here four taps are used during a single pass and loop is
unrolled to save cycle. Thus loop is executed (nH/4-1) times.
The filter output R(n) is 16-bit saturated equivalent of acc
when the tap loop is executed fully.

FirSym_4_16 FIR Filter, Symmetric, Coefficients - multiple of four, 
Sample processing (cont’d)

acc acc X n( ) H0 X n 1–( ) H1⋅+⋅+=

acc acc X n nH– 1+( ) H0 X n nH– 2+( ) H1⋅+⋅+=
User’s Manual 4-145 V 1.2, 2000-01



 Function Descriptions
As Delay-Buffer is circular, the delay line update is done
efficiently. The size of the circular Delay-Buffer is equal to the
filter order, i.e., twice the number of given coefficients.
Circular buffer needs doubleword alignment and to use load
word instruction, size of the buffer should be multiple of four
bytes. The number of coefficients given should be even,
which means the filter order is a multiple of four.

Delay pointers in the memory note show updated pointers for
the next iteration. caDLY1 points to the oldest value in the
Delay-Buffer which is replaced by new input value.

Example Trilib\Example\Tasking\Filters\FIR\expFirSym_4_16.c, 
expFirSym_4_16.cpp
Trilib\Example\GreenHills\Filters\FIR\expFirSym_4_16.cpp
, expFirSym_4_16.c
Trilib\Example\GNU\Filters\FIR\expFirSym_4_16.c

Cycle Count With DSP 
Extensions

Pre-kernel : 10

Kernel :  

if nH > 8

if nH = 8

Post-Kernel : 4+2

Without DSP 
Extensions

Pre-kernel : 10

Kernel : same as With DSP Extensions

FirSym_4_16 FIR Filter, Symmetric, Coefficients - multiple of four, 
Sample processing (cont’d)

nH
4

------- 1– 3 2+×

nH
4

------- 1– 3 1+×
User’s Manual 4-146 V 1.2, 2000-01



 Function Descriptions
Post-kernel : 5+2

Code Size 92 bytes

FirSym_4_16 FIR Filter, Symmetric, Coefficients - multiple of four, 
Sample processing (cont’d)
User’s Manual 4-147 V 1.2, 2000-01



 Function Descriptions
FirSymBlk_4_16 FIR Filter, Symmetric, Coefficients - multiple of 4, 
Block processing

Signature void FirSymBlk_4_16(DataS             *X,
                                   DataS             *R,
                                   DataS             *H,
                                   cptrDataS       *DLY,
                                   int                   nX
                                   ); 

Inputs X : Pointer to Input-Buffer

R : Pointer to Output-Buffer

H : Pointer to Coeff-Buffer of size nH/2

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct 

nX : Size of Input-Buffer

Output DLY : Updated circular buffer with index 
set to the oldest value of the filter 
Delay-Buffer

R : Output-Buffer

Return None

Description The implementation of FIR filter uses transversal structure
(direct form). A block of inputs are processed at a time and
output for every sample is stored in the output array. The filter
operates on 16-bit real input, 16-bit coefficients and gives 16-
bit real output. The filter order should be a multiple of four.
Therefore the number of coefficients given by the user should
be even and half of the filter order. Optimal implementation
requires filter order to be multiple of four. Circular buffer
addressing mode is used for delay line. Delay line buffer is
doubleword aligned. Input, output and coefficient buffer are
halfword aligned. The Delay-Buffer is twice the size of Coeff-
Buffer.
User’s Manual 4-148 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;        //Filter Result
   int i,j,k;
   frac16circ  *aDLY=&DLY1;
                      //ptr to Circ-ptr of Delay-Buffer
   frac16 *H0;        //Ptr to Coeff-Buffer
   H0 = H;
   DLY2 = DLY1-1;
   aDLY = &DLY2;      //store index to the oldest value for next instant
   DLY2 = DLY2-1;     //Ptr to X(n-nH+2)
   *DLY1 = X;         //Store input value in Delay-Buffer at 
                      //the position of the oldest value
   for(i=0; i<nX; i++)
   {
      acc = 0.0;
      k=0;
      //The index i,j,k of X1(i),X2(j),H(k)(in the comments) 
      //are valid for first loop iteration. 
      //For each next loop i,j,k should be decremented, incremented and  
      //incremented by 2 respectively.
      //’n’ in the comments refers to current instant

      for(j=0; j<nH/2; j++)
      {
         acc = acc + (frac64)(*(H+k) * (*(DLY1+k)) + 
                              (*(H+k+1)) * (*(DLY1+k+1)));                      
                      //acc += X1(n) * H(0) + X1(n-1) * H(1)
         acc = acc + (frac64)(*(H+k) * (*(DLY2-k)) + 
                             (*(H+k+1)) * (*(DLY2-k-1)));
                      //acc += X2(n-nH+1) * H(0) +  X2(n-nH+2) * H(1) ||
         k=k+2;
      }
      DLY1 = *aDLY;   //Set DLY.index to the oldest value in Delay-Buffer
      H = H0;

      *R++ = (frac16 sat)acc;
                      //Format the filter output from 48-bit
                      //to 16-bit saturated value
   }

}

FirSymBlk_4_16 FIR Filter, Symmetric, Coefficients - multiple of 4, 
Block processing (cont’d)
User’s Manual 4-149 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop unrolling, four taps/loop
• Use of packed data Load/Store
• Delay line implemented as circular buffer
• Use of dual MAC instructions
• Intermediate results stored in 64-bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Inputs, outputs, coefficients and delay line are in 1Q15
format

• Filter order nH is not explicitly sent as an argument, instead
it is sent through the argument DLY as a size of circ-Delay-
Buffer 

FirSymBlk_4_16 FIR Filter, Symmetric, Coefficients - multiple of 4, 
Block processing (cont’d)
User’s Manual 4-150 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-35 FirSymBlk_4_16

FirSymBlk_4_16 FIR Filter, Symmetric, Coefficients - multiple of 4, 
Block processing (cont’d)

Input-Buffer
Output-Buffer

Delay-Buffer

Coeff-Buffer

aR

R(1)

.

.

R(n)

R(n + 1)

.

R(0)

.

aH

aDLY2 caDLY2

Dual
MAC

1Q15
doubleword

aligned

H0

H1

.

HnH/2 -1

aDLY1 caDLY1

aX

1Q15

Dual
MAC

1Q15

1Q15

.

X(n-nH+2)

X(n-nH+1)

X(n)

X(n-1)

.

.

X(n-nH/2+1)

X(n-nH/2)

.

X(1)

.

.

X(n)

X(n+1)

.

X(0)

.

nH/2

halfword
aligned halfword

aligned

halfword
aligned
User’s Manual 4-151 V 1.2, 2000-01



 Function Descriptions
4.4.3 Multirate Filters

Discrete time systems with unequal sampling rates at various parts of the system are
called Multirate Systems. For sampling rate alterations, the basic sampling rate
alteration devices are invariably employed together with lowpass digital filters. Filters
having different sampling rates at input and output of filter are called Multirate Filters.
The two types of multirate filtering processes are Decimation filtering and Interpolation
filtering.

Implementation This symmetric FIR filter routine processes a block of input 
values at a time. The pointer to the input buffer is sent as an 
argument to the function. The output is stored in output buffer, 
the starting address of which is also sent as an argument to 
the function.

Implementation details are same as FirSym_4_16, except 
that the Coeff-Buffer pointer is stored for next iteration and an 
additional loop is needed to calculate the output for every 
sample in the buffer. Hence, this loop is repeated as many 
times as the size of the input buffer.

Example Trilib\Example\Tasking\Filters\FIR\expFirSymBlk_4_16.c, 
expFirSymBlk_4_16.cpp
Trilib\Example\GreenHills\Filters\FIR\
expFirSymBlk_4_16.cpp, expFirSymBlk_4_16.c
Trilib\Example\GNU\Filters\FIR\expFirSymBlk_4_16.c

Cycle Count Pre-kernel : 4

Kernel :  

Post-kernel : 0+2

Code Size 116 bytes

FirSymBlk_4_16 FIR Filter, Symmetric, Coefficients - multiple of 4, 
Block processing (cont’d)

nX 9 3
nH
4

------- 1– 
  1+× 5+ +

 
 
 

×

+ 1+2
User’s Manual 4-152 V 1.2, 2000-01



 Function Descriptions
4.4.3.1 Decimating Filters

Decimation is equivalent to down sampling a discrete-time signal. It is used to eliminate
redundant data, allowing more information to be stored, processed or transmitted in the
same amount of data.

Decimator or down sampler reduces the sampling rate by a factor of integer M.

Figure 4-36 Decimation/down Sampling Illustration

The sampling rate of a critically sampled discrete time signal with a spectrum occupying
the full Nyquist range cannot be reduced any further since such a reduction will introduce
aliasing. Hence the bandwidth of a critically sampled signal must first be reduced by
lowpass filtering before its sampling rate is reduced by a down sampler. The decimation
algorithm can be implemented using FIR or IIR filter structure. But generally, FIR is used.
The overall system comprising of a lowpass filter followed by a down sampler ahead of
a lowpass FIR filter is called decimator or decimating FIR. Such a filter would give an
output for every Mth input.

The decimating FIR filter is given by 

[4.46]

Figure 4-37 Decimation Filter Block Diagram

4.4.3.2 Interpolating FIR Filters

Interpolation increases the sample rate of a signal inserting zeros between the samples
of input data. In practice, the zero-valued samples inserted by the up sampler are
replaced with appropriate non-zero values using some type of interpolation process in

MX[n]=Xa(nT) y[n]=Xa(nMT)

FT=1/T F’T=FT/M=1/T’

y m( ) h K( )x Mm K–( )

K 0=

N 1–

∑=

MH(Z)X[n] y[n]
V[n]
User’s Manual 4-153 V 1.2, 2000-01



 Function Descriptions
order that the new higher rate sequence be useful. This interpolation can be done by
digital lowpass filtering.

Figure 4-38 Interpolation/Down Sampling Illustration

The system comprising of up sampler followed by FIR lowpass filter which is used to
remove the unwanted images in the spectra of up sampled signal is called Interpolating
FIR filter. 

Figure 4-39 Interpolation Filter Block Diagram

The rate expander inserts If-1 zero valued samples after each input sample. The
resulting samples Xin[n] are lowpass filtered to produce output y(n), a smooth and anti
imaged version of Xin[n]. The transfer function of interpolator H(k) incorporates a gain of
1/If because the If-1 zeros inserted by the rate expander cause the energy of each input
to be spread over If output samples. The lowpass filter of interpolator uses a direct form
FIR filter structure for computational efficiency. Output of an FIR filter is given by 

[4.47]

where,

N-1 : the number of filter coefficients (taps)

Xin[n-k] : the rate expanded version of the input X[n]

LX[n]=Xa(nT) y[n]=Xa(n/LT)

FT=1/T F’T=FT.L=1/T’

H(Z)LX[n]

Xin[n]

y[n]

y n[ ] h k( )Xin n k–[ ]

k 0=

N 1–

∑=
User’s Manual 4-154 V 1.2, 2000-01



 Function Descriptions
X[n] is related to Xin[n-k] by

 for (n-k)=0,

                                             Otherwise

4.4.3.3  Description

The following Multirate FIR filters are described.

• Decimation FIR
• Interpolation FIR

Xin n k–[ ]
X n k–( ) If⁄( )

0



= If 2If…±,±
User’s Manual 4-155 V 1.2, 2000-01



 Function Descriptions
FirDec_16 Decimation FIR Filter

Signature void FirDec_16(DataS          *X,
                        DataS          *R,
                        cptrDataS      H,
                        cptrDataS     *DLY,
                        int                 nX,
                        int                  Df
                        ); 

Inputs X : Pointer to Input-Buffer

R : Pointer to Output-Buffer

H : Circular pointer of Coeff-Buffer of 
size nH

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH
Without DSP Extension - Pointer to 
Circ-Struct 

(nH) : Transferred as a part of Circular 
Pointer data type in a DLY 
parameter

nX : Size of Input-Buffer

Df : Decimation length   

Outputs DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

R(nX) : Output-Buffer

Return None

Description The implementation of Decimation FIR filter uses transversal 
structure (direct form). A block of inputs are processed at a 
time. The filter operates on 16-bit real input, 16-bit coefficients 
and gives 16-bit real output. Number of coefficients is 
arbitrary. If nX/Df is not an integer, the trailing samples are 
lost. Circular buffer addressing mode is used for coefficients 
and delay line. Both coefficient buffer and Delay-Buffer are 
doubleword aligned. Input and output buffers are halfword 
aligned.
User’s Manual 4-156 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;       //Filter result
   int j,i,k;
   frac16circ *adly=&DLY;
                     //Ptr to Circ-ptr of Delay-Buffer
   //macro
   macro FirDec EV_Coef, EV_Coef_Odd_Df
   {
      if EV_Coef==TRUE
      {
         //FIR filtering
         for(i=0; i<nX; i++)
         {
            *DLY = *X++;
                     //Store input value in Delay-Buffer at 
                     //the position of the oldest value
            acc = 0.0;
            // ’n’ in the comments refers current instant
            //The index i,j of X(i),H(j)(in the comments) are 
            //valid for first loop iteration.
            //For each next loop i,j should be decremented 
            //and incremented by 2 respectively.
            for(j=0; j<nH/2; j++)
            {
               acc = acc + (frac64)(*(H+k) * (*(DLY+k)) + 
                     (*(H+k+1)) * (*(DLY+k+1)));
                     //acc += X(n)*H(0) + X(n-1)*H(1)
               k=k+2;
            }
            DLY--;
            //(Df-1) values loaded into delay buffer before next output
            //calculation
            if (EV_Coef_Odd_Df==TRUE)
            {
               for(i=0;i<(Df-1)/2;i++)
               {
                  *DLY-- = *X++;
                  *DLY-- = *X++;
               }
            }
            else
            {
 

FirDec_16 Decimation FIR Filter
User’s Manual 4-157 V 1.2, 2000-01



 Function Descriptions
                  for(i=0;i<Df-1;i++)
                  {
                     *DLY-- = *X++;
                  }
      else
      {
      // ’n’ in the comments refers to current instant
      //The index i,j of X(i),H(j)(in the comments) are 
      //valid for first loop iteration.
      //For each next loop i,j should be decremented and 
      //incremented by 1 respectively.
         for(j=0; j<nH; j++)
         {
            acc = acc + (frac64)(*(H+k) * (*(DLY+k)));
                     //acc += X(n)*H(0)
            k=k+1;
         }
         DLY--;
         //(Df-1) values loaded into delay buffer before next output
         //calculation
         for(i=0;i<Df-1;i++)
         {
            *DLY-- = *X++;
         }
      }        
   }//End of Macro

   FirDec_16:
   {
      nR = nX/Df;
      if (nH%2 == 0)
      {
         if (Df%2 != 0)
         {
             FirDec TRUE, TRUE;
         }
         FirDec TRUE, FALSE;
      }
      else
      {
         FirDec FALSE, FALSE;
      }
   }
}

FirDec_16 Decimation FIR Filter
User’s Manual 4-158 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop unrolling, two taps/loop if coefficients are even else
one tap/loop 

• Use of packed data Load/Store
• Delay line implemented as circular buffer
• Coefficient buffer implemented as circular buffer
• Intermediate results stored in 64-bit register 
• Instruction ordering for zero overhead Load/Store

Assumptions • Inputs, outputs, coefficients and delay line are in 1Q15
format 

• Filter order nH is not explicitly sent as an argument, instead
it is sent through the argument DLY as a size of circ-Delay-
Buffer

FirDec_16 Decimation FIR Filter
User’s Manual 4-159 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-40 FirDec_16

FirDec_16 Decimation FIR Filter

Input-Buffer

Delay-Buffer

Coeff-Buffer

aX
X(1)

.

.

X(n)

X(n+1)

.

X(0)

X(nX)
aDLYcaDLY

.

X(n-nH+1)

X(n)

X(n-1)

X(n-2)

.

.

.

1Q15

1Q15

aHcaH

halfword
aligned

doubleword
aligned

H1

.

.

HIn-1

HIn

.

H0

HnH-1

1Q15

doubleword
aligned

Output-Buffer

aR
R(1)

.

.

.

.

.

R(0)

R(nX/Df - 1)

1Q15

halfword
aligned
User’s Manual 4-160 V 1.2, 2000-01



 Function Descriptions
Implementation Decimation FIR filter is implemented with Transversal 
structure which is realized by a tapped delay line. This 
Decimation FIR filter routine processes a block of input values 
at a time. The pointer to the input buffer is sent as an 
argument to the function. The output is stored in output buffer, 
the starting address of which is also sent as an argument to 
the function.

Both Coeff-Buffer and data buffer are circular and need 
doubleword alignment. The size of Coeff-Buffer and Delay-
Buffer are equal to filter order, i.e., the number of coefficients.
The size of output buffer is nX/Df as there will be an output 
only for every Dfth input. A macro is used for performing the 
decimating FIR filtering. The macro is called with two 
arguments, EV_Coef, EV_Coef_Odd_Df. 
If the number of coefficients is even (EV_Coef = TRUE)
TriCore’s load word instruction loads the two delay line values 
and two coefficients in one cycle. Dual MAC instruction 
performs a pair of multiplications and additions according to 
the equation

[4.48]

By using a dual MAC in the tap loop, the loop count is brought
down by a factor of two. Here two taps are used during a
single pass and loop is unrolled for efficient pointer update of
delay line. Thus loop is executed (nH/2-1) times. 

In case of odd number of coefficients TriCore’s load halfword
instruction loads one delay line value and one coefficient in
one cycle. MAC instruction performs one multiplication and
one addition according to the equation

[4.49]

By using a MAC in the tap loop, the loop count remains nH.
Only one tap is used during a single pass and loop is unrolled
for efficient pointer update of delay line. Thus loop is executed
(nH-1) times.

For decimation, after each FIR output calculation the delay
line has to be updated by (Df-1) inputs for which output will not
be calculated.

FirDec_16 Decimation FIR Filter

acc acc X n( ) H0 X n 1–( ) H1⋅+⋅+=

acc acc X n( ) H0⋅+=
User’s Manual 4-161 V 1.2, 2000-01



 Function Descriptions
If the number of coefficients is even and Df is odd,
(EV_Coef_Odd_Df = TRUE) then the updation of delay line
can be done using TriCore’s load word instructions thereby
reducing the loop count for the decimation loop by a factor of
two else the load halfword instruction is used and the loop is
executed (Df-1) times.

Thus the implementation is most optimal for the case of even
coefficient and odd Df.

Example Trilib\Example\Tasking\Filters\FIR\expFirDec_16.c, 
expFirDec_16.cpp
Trilib\Example\GreenHills\Filters\FIR\expFirDec_16.cpp, 
expFirDec_16.c
Trilib\Example\GNU\Filters\FIR\expFirDec_16.c

Cycle Count For Macro FirDec

Mcall (TRUE,TRUE)

Pre-loop : 3

Loop :  

Post-loop : 2

Mcall 
(TRUE,FALSE)

Pre-loop : 3

Loop :

Post-loop : 2

Mcall 
(TRUE,FALSE)

Pre-loop : 2

FirDec_16 Decimation FIR Filter

nX
Df
------- 5

nH
2

------- 1– 
  2 5+ +×

+ Df 1–( ) 2⁄( )3 3 ] 2+ +

nX
Df
------- 5

nH
2

------- 1– 
  2 5 Df 2( )+ + +×

+3 ] 2+
User’s Manual 4-162 V 1.2, 2000-01



 Function Descriptions
Loop :

Post-loop : 2

where integer part of nX/Df is considered. The number of
cycles taken by the Loop should be reduced by nX/Df if either
the tap loop or the decimation loop gets executed only once.
If both get executed only once then the total reduction in
number of cycles taken by the loop is 2(nX/Df) for all the
cases.

For FirDec_16

With DSP 
Extensions

Even nH and odd Df

Even nH and even Df

Odd nH

where Mcall (X,Y) is the number of cycles taken by the macro 
when the arguments passed to it are X and Y.

FirDec_16 Decimation FIR Filter

nX
Df
------- 5 nH 1–( )2 5 Df 2( )+ + +[×

+3 ] 2+

31 Mcall TRUE TRUE,( ) 2 2+ + +

27 Mcall TRUE FALSE,( ) 2 2+ + +

28 Mcall FASLE FALSE,( ) 2 2+ + +
User’s Manual 4-163 V 1.2, 2000-01



 Function Descriptions
Without DSP 
Extensions

Even nH and odd Df

Even nH and even Df

Odd nH

where Mcall (X,Y) is the number of cycles taken by the macro 
when the arguments passed to it are X and Y.

Code Size 308 bytes

33 Mcall TRUE TRUE,( ) 2 2+ + +

29 Mcall TRUE FALSE,( ) 2 2+ + +

30 Mcall FALSE FALSE,( ) 2 2+ + +
User’s Manual 4-164 V 1.2, 2000-01



 Function Descriptions
FirInter_16 Interpolation FIR Filter

Signature void FirInter_16(DataS          *X,
                         DataS          *R,
                         cptrDataS     H,
                         cptrDataS     *DLY,
                         int                 nX,
                         int                  If
                         ); 

Inputs X : Pointer to Input-Buffer

R : Pointer to Output-Buffer

H : Circular pointer of Coeff-Buffer of 
size nH

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH
Without DSP Extension - Pointer to 
Circ-Struct 

(nH) : Transferred as a part of Circular 
Pointer data type in a DLY 
parameter

nX : Size of Input-Buffer

If : Interpolation length   

Outputs DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

R(nX) : Output-Buffer

Return None

Description The implementation of Interpolation FIR filter uses transversal 
structure (direct form). The block of inputs are processed at a 
time and output for every sample is stored in the output array. 
The filter operates on 16-bit real input, 16-bit coefficients and 
gives 16-bit real output. The number of coefficients given by 
user are arbitrary, but nX/If must be an integer. Circular buffer 
addressing mode is used for coefficients and delay line. Both 
coefficient buffer and delay line buffer are doubleword 
aligned. Input and output buffer are halfword aligned.
User’s Manual 4-165 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;       //Filter result
   int i,j,k,l;     
   frac16 circ*aDLY=DLY
                     //Ptr to Circ-Ptr of Delay-Buffer
   if ((nH/If)%2 == 0)
   {
      for (i=0;i<nX;i++)
      {
         *DLY=*X     //store input value in Delay-Buffer at the
                     //position of the oldest value
         acc = 0.0;
         l = 0;
         for (j=0;j<If;j++)
         {
         // ’n’ in the comments refers current instant
         //The index i,j of X(i),H(j)(in the comments) are 
         //valid for first loop iteration.
         //For each next loop i,j should be decremented and 
         //incremented by 1 respectively.
           
            for (k=0;k<nH/2If;k++)
            {
               m = 0;
               acc = acc + (frac64)(*(H+l+m)*(*DLY+k)) + (*(H+l+m+1)*
                     (*(DLY+k+1)));
                     //acc = X(n)*H(0)+X(n-1)*H(If)
               m = m + If;
               k = k + 2;
            }//(nH/2If) loop
            l++;
            *R++ = (frac16 sat)acc;
                     //format the filter output from 48-bit to 16-bit    
                     //saturated value
          }//(If) loop
            DLY--;
       }//nX loop
    }//If
    else
    {
                            
           

FirInter_16 Interpolation FIR Filter (cont’d)
User’s Manual 4-166 V 1.2, 2000-01



 Function Descriptions
      for (i=0;i<nX;i++)
      {
         *DLY=*X        //store input value in Delay-Buffer at the
                     //position of the oldest value
         acc = 0.0;          
         l = 0;
         for (j=0;j<If;j++)
         {
         // ’n’ in the comments refers current instant
         //The index i,j of X(i),H(j)(in the comments) are 
         //valid for first loop iteration.
         //For each next loop i,j should be decremented and 
         //incremented by 1 respectively.    
            for (k=0;k<nH/If;k++)       
            {    
               m = 0;
               acc = acc + (frac64)(*(H+l+m)*(*DLY+k)) 
                     //acc = X(n)*H(0)+X(n-1)*H(If)
               m = m + If;
               k = k + 1;
            }//(nH/If) loop 
            l++;
            *R++ = (frac16 sat)acc;
                     //format the filter output from 48-bit to 16-bit    
                     //saturated value
          }//(If) loop
          DLY--;
         
       }//nX loop 
       aDLY = DLY;    //store updated delay
    }//else loop
}

Techniques • Loop unrolling, one tap/loop if (nH/If) is odd and two
taps/loop if even

• Use of packed data Load/Store
• Delay line implemented as circular buffer
• Coefficient buffer implemented as circular buffer
• Intermediate results stored in 64-bit register 
• Instruction ordering for zero overhead Load/Store

FirInter_16 Interpolation FIR Filter (cont’d)
User’s Manual 4-167 V 1.2, 2000-01



 Function Descriptions
Assumptions • Inputs, outputs, coefficients and delay line are in 1Q15
format 

• Filter order nH is not explicitly sent as an argument, instead
it is sent through the argument DLY as a size of circ-Delay-
Buffer

• The size of circ-Delay-Buffer is nH/If and it should be
integer

FirInter_16 Interpolation FIR Filter (cont’d)
User’s Manual 4-168 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-41 FirInter_16

FirInter_16 Interpolation FIR Filter (cont’d)

Input-Buffer
Output-Buffer

Delay-Buffer

Coeff-Buffer

aRaX
X(1)

.

.

X(n)

X(n+1)

.

X(0)

.

R(1)

.

.

Rf-1

Rf

.

R(0)

.
aDLYcaDLY

.

X(n-nH+1)

X(n)

X(n-1)

X(n-2)

.

.

.

1Q15

1Q15

aHcaH

halfword
aligned

doubleword
aligned

1Q15

halfword
aligned

H1

.

.

Hf-1

Hf

.

H0

HnH-1

1Q15

doubleword
aligned
User’s Manual 4-169 V 1.2, 2000-01



 Function Descriptions
Implementation Interpolation FIR filter implemented structure is transversal 
type which is realized by a tapped delay line. This 
interpolation FIR filter routine processes a block of input 
values at a time. The pointer to the input buffer is sent as an 
argument to the function. The output is stored in output buffer, 
the starting address of which is also sent as an argument to 
the function.
In Interpolation FIR both Coeff-Buffer and data-buffer are 
circular and needs doubleword alignment. The size of Coeff-
Buffer is equal to filter order, i.e., the number of coefficients.

Implementation is different for even and odd coefficients.

Even number of coefficients:

TriCore’s load word instruction loads the two delay line values 
and two coefficients in one cycle. Dual MAC instruction 
performs a pair of multiplications and additions according to 
the equation

[4.50]

By using a dual MAC in the tap loop, the loop count is brought 
down by a factor of two. This tap loop which is innermost loop, 
is executed (nX/2If-1) times. Delay pointer is incremented 
once every cycle, so that successive data are multiplied. 
Coefficient pointer after each product and accumulation is 
incremented by If. This is done to make the routine efficient on 
the multiplication by zero in data samples are avoided by 
incrementing the coefficients pointer by If.

Odd number of coefficients:

TriCore’s load halfword instruction loads one delay line value 
and one coefficients in one cycle. MAC instruction performs 
one multiplication and one addition according to the equation

[4.51]

FirInter_16 Interpolation FIR Filter (cont’d)

acc acc X n( ) H0 X n 1–( ) HIf⋅+⋅+=

acc acc X n( ) H0⋅+=
User’s Manual 4-170 V 1.2, 2000-01



 Function Descriptions
This tap loop which is innermost loop turns (nX/If-1) times. 
Delay pointer is incremented once every cycle, so that 
successive data are multiplied. Coefficient pointer after each 
product and accumulation is incremented by If. This is done to 
make the routine efficient, as the multiplication by zeros in 
data samples are avoided by incrementing the coefficients 
pointer by If.
In data loop runs nX times. Delay pointer points to the oldest 
data and coefficient pointer to beginning of Coeff-Buffer.
Interpolation loop runs If times. Delay pointer points to the 
new data which is loaded and coefficient pointer points to one 
more than what it has pointed during last iteration.

Example Trilib\Example\Tasking\Filters\FIR\expFirInter_16.c, 
expFirInter_16.cpp
Trilib\Example\GreenHills\Filters\FIR\expFirInter_16.cpp, 
expFirInter_16.c
Trilib\Example\GNU\Filters\FIR\expFirInter_16.c

Cycle Count With DSP 
Extensions

For even number of coefficients

For odd number of coefficients

Without DSP 
Extensions

For even number of coefficients

FirInter_16 Interpolation FIR Filter (cont’d)

12 nX 3 If 11
nH

2 If×
------------- 
  1– 
  5( ) 1+×+

 
 
 

2 2+ +×+×+

+1+2+1+2

7 nX 3 If 9
nH
If

------- 1– 
  3( ) 1+×+

 
 
 

2 2+ +×+×+

+1+2+1+2

14 nX 3 If 11
nH

2 If×
------------- 
  1– 
  5( ) 1+×+

 
 
 

2 2+ +×+×+

+1+2+1+2
User’s Manual 4-171 V 1.2, 2000-01



 Function Descriptions
For odd number of coefficients

Code Size 142 bytes

FirInter_16 Interpolation FIR Filter (cont’d)

9 nX 3 If 9
nH
If

------- 1– 
  3( ) 1+×+

 
 
 

2 2+ +×+×+

+1+2+1+2
User’s Manual 4-172 V 1.2, 2000-01



 Function Descriptions
4.5 IIR Filters

Infinite Impulse Response (IIR) filters have infinite duration of non-zero output values for
a given finite duration of non-zero impulse input. Infinite duration of output is due to the
feedback used in IIR filters.

Recursive structures of IIR filters make them computationally efficient but because of
feedback not all IIR structures are realizable (stable). The transfer function for the direct
form of the biquad (second order) IIR filter is given by

[4.52]

where H3, H4 correspond to the poles and H0, H1, H2 correspond to the zeroes of the
filter.

The equivalent difference equation is 

[4.53]

where, X(n) is the nth input and R(n) is the corresponding output.

The direct form is not commonly used in IIR filter design. In the case of a linear shift-
invariant system, the overall input-output relationship of a cascade is independent of the
order in which systems are cascaded. This property suggests a second direct form
realization. Therefore, another form called Canonical form (also called direct form II)
which uses half the number of delay stages and thereby less memory, is used for the
implementation. All the IIR filters in this DSP Library have been implemented in this form.

H z[ ] R z[ ]
X z[ ]
------------

H0 H1 z
1–

H2 z⋅+
2–

⋅+

1 H3 z
1–⋅( )– H4 z

2–⋅( )–
---------------------------------------------------------------= =

R n( ) H0 X n( ) H1 X n 1–( ) H2 X n 2–( )⋅+⋅+⋅=

+ H3 R n 1–( ) H4 R n 2–( )⋅+⋅
User’s Manual 4-173 V 1.2, 2000-01



 Function Descriptions
The block diagram for a biquad (second order) filter in canonical form is as follows.

Figure 4-42 Canonical Form (Direct Form II) Second-order Section

Equation [4.52] can be broken into two parts in terms of zeroes and poles of transfer
function as

[4.54]

From the figure, it is clear that the first part of this equation corresponds to poles and the
second corresponds to zeros. All the implementations of IIR filters use this equation.

The term W(n), called as the delay line, refers to the intermediate values. Any higher
order IIR filter can be constructed by cascading several biquad stages together. A
cascaded realization of a fourth order system using direct form II realization of each
biquad subsystem would be as shown in the following diagram.

+ +

H3

X[n]

+ +

Z-1

Z-1

H1

H2H4

R[n]
W1[n]

W1[n-2]

W1[n-1]

H0

W n( ) X n( ) H3 W n 1–( ) H4 W n 2–( )⋅+⋅+=

R n( ) H0 W n( ) H1 W n 1–( ) H2 W n 2–( )⋅+⋅+⋅=
User’s Manual 4-174 V 1.2, 2000-01



 Function Descriptions
Figure 4-43 Cascaded Biquad IIR Filter

A Comparison between FIR and IIR filters:

• IIR filters are computationally efficient than FIR filters i.e., IIR filters require less
memory and fewer instruction when compared to FIR to implement a specific transfer
function.

• The number of necessary multiplications are least in IIR while it is most in FIR.
• IIR filters are made up of poles and zeroes. The poles give IIR filter an ability to realize

transfer functions that FIR filters cannot do.
• IIR filters are not necessarily stable, because of their recursive nature it is designer’s

task to ensure stability, while FIR filters are guaranteed to be stable.
• IIR filters can simulate prototype analog filter while FIR filters cannot.
• Probability of overflow errors is quite high in IIR filters in comparison to FIR filters.
• FIR filters are linear phase as long as H(z) = H(z-1) but all stable, realizable IIR filters

are not linear phase except for the special cases where all poles of the transfer
function lie on the unit circle.

4.5.1 Descriptions

The following IIR filter functions are described.

• Coefficients -  multiple of four, Sample processing
• Coefficients -  multiple of four, Block processing
• Coefficients -  multiple of five, Sample processing
• Coefficients -  multiple of five, Block processing

R(n)
+

H3

X(n)

Z-1

H1

H2
H4

W1(n)

W1(n-2)

W1(n-1)

H0
+

+ +

Z-1

+

H8

Z-1

H6

H7
H9

W2(n)

W2(n-2)

W2(n-1)

H5
+

+ +

Z-1
User’s Manual 4-175 V 1.2, 2000-01



 Function Descriptions
IirBiq_4_16 IIR Filter, Coefficients - multiple of four, Sample 
processing

Signature DataS IirBiq_4_16(DataS          X, 
                               DataS          *H,
                               DataS          *DLY,
                               int                nBiq
                               );

Inputs X : Real input value

H : Pointer to Coeff-Buffer

DLY : Pointer to Delay-Buffer

nBiq : Number of Biquads

Output DLY[2*nBiq] : Updated delay line is an implicit
output - Wi(n) and Wi(n-1) are
stored as Wi(n-1) and Wi(n-2) for
next sample computation 

Return R : Output value of the filter (48-bit
output value converted to 16-bit
with saturation).

Description The IIR filter is implemented as a cascade of direct form II
Biquads. If number of biquads is ’n’, the filter order is 2*n. A
single sample is processed at a time and output for that
sample is returned. The filter operates on 16-bit real input, 16-
bit real coefficients and returns 16-bit real output. The number
of inputs is arbitrary, while the number of coefficients is
4*(number of Biquads). Length of delay line is 2*(number of
Biquads). In internal memory Coeff-Buffer can be halfword/
word aligned but in external memory it has to be halfword and
not word aligned. This ensures that after the scale value is
read and the pointer incremented, the starting address of the
coefficients is word aligned. Delay-Buffer can be halfword
aligned in both internal and external memory.
User’s Manual 4-176 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{ 
    frac16 *W;        //Ptr to Delay-Buffer
    frac64 W64;
    frac64 acc;       //Filter result
    int i,j;
    InScale = *H;     //InScale value is read
  
    W =DLY;
    H++;              //Ptr to Coefficients
    acc =(frac64) (X * InScale);
                      //Input scaled by InScale and stored in 19Q45 format
    //Biquad loop
    //’n’ (in the comments) refers to the current instant
    //Indices i and j of H(i) and W_j in the comments are valid only for
    //the first iteration
    //For subsequent iterations they have to be incremented by 4 
    //and 1 respectively
    
    for(i=0;i<nBiq;i++)
    {
       //W64 in 19Q45
       W64 = acc + ( *(H+2) * (*W) + *(H+3) * (*(W+1)) );
                      //W_1(n) = X(n) + H(3) * W_1(n-1) + H(4) * W_1(n-2)
       //acc in 19Q45
       acc = W64 +(frac64) ( (*H) * (*W)   + (*(H+1)) * (*(W+1)) ); 
                      //acc = acc + H(1) * W_1(n-1) + H(2) * W_1(n-2)
       *(W+1) = *W;   //Update the  Delay line 

       *W =((_frac16 _sat)W64);
                      //Format the delay line value to 16-bit(1Q15) 
                      //saturated and store the updated value in memory

       W = W + 2;     //Ptr to W_2(n-1)
       H = H + 4;     //Ptr to H(5)
    }

    R = (frac16 sat)acc;   
                      //Format the Filter output to 16-bit (1Q15)
                      //saturated value

    return R;         //Filter Output returned
}

IirBiq_4_16 IIR Filter, Coefficients - multiple of four, Sample 
processing (cont’d)
User’s Manual 4-177 V 1.2, 2000-01



 Function Descriptions
Techniques • Use of packed data Load/Store
• Use of dual MAC instructions
• Intermediate results stored in a 64-bit register (16 guard

bits)
• Filter output converted to 16-bit with saturation
• Instruction ordering provided for zero overhead Load/Store

Assumptions • Input and output are in 1Q15 format 
• Coefficients are in 2Q14 format

Memory Note

Figure 4-44 IirBiq_4_16

IirBiq_4_16 IIR Filter, Coefficients - multiple of four, Sample 
processing (cont’d)

Dual
MAC-2

Delay-Buffer aH

aW H(1)
H(2)
H(3)
H(4)

.

.

Inscale

H(4*nBiq)

Coeff-Buffer

Dual
MAC-1

2Q14

1Q15

1Q15

W1(n-2)
.

Wk(n-1)
Wk(n-2)

.
WnBiq(n-1)

W1(n-1)

WnBiq(n-2)
User’s Manual 4-178 V 1.2, 2000-01



 Function Descriptions
 Implementation The IIR filter implemented as a cascade of biquads has two
delay elements per biquad and five coefficients per biquad. In
this implementation, the fifth coefficient which scales the
current delay line value of the biquad (H0) is taken to be one.
The input is scaled by a constant value, Inscale. Hence, only
four coefficients per biquad are considered. The kth biquad
uses the coefficients H(4k-3), H(4k-2), H(4k-1) and H(4k), k =
1,2,...nBiq.

This IIR filter routine processes one sample at a time and
returns the output for that sample. The input for which the
output is to be calculated is sent as an argument to the
function.

TriCore’s load doubleword instruction loads the four 
coefficients used in a biquad in one cycle. Load word 
instruction loads the corresponding two delay line values 
(Wk(n-1),Wk(n-2)). A dual MAC instruction performs a pair of 
multiplications and additions to generate the new delay line 
value for that biquad in one cycle according to the equation 

[4.55]

where, R0(n) = X(n).   

A second Dual MAC instruction uses this delay line value and
performs another pair of multiplication and additions to
generate the output for that biquad in one cycle according to
the equation

 [4.56]

where, RnBiq(n) = R(n). 

Wk(n) and Wk(n-1) of the current sample become Wk(n-1) and
Wk(n-2) for the next sample computation. The Delay line is
updated accordingly in memory.

IirBiq_4_16 IIR Filter, Coefficients - multiple of four, Sample 
processing (cont’d)

Wk n( ) Rk 1– n( ) H 4k 1–( ) Wk× n 1–( )+=

+ H 4K( ) Wk× n 2–( )

Rk n[ ] Wk n( ) H 4k 3–( ) Wk n 1–( )×+=

+ H 4K 2–( ) Wk× n 2–( )
User’s Manual 4-179 V 1.2, 2000-01



 Function Descriptions
Hence a loop executed as many times as there are biquad
stages will generate the filter output, with each pass through
it yielding the output for that biquad stage.

Load doubleword instruction of TriCore requires word 
alignment in external memory. If external memory is used, 
since first value in the Coeff-Buffer is Inscale, followed by the 
coefficients used in each biquad stage, the address of the 
Coeff-Buffer should be halfword and not word aligned. That is, 
it should be a multiple of two bytes but not a multiple of four 
bytes. This ensures that once Inscale (16 bit value) is read 
and pointer is incremented, the address at which the 
coefficients begin would be a multiple of four bytes as required 
by the load double word instruction.

Example Trilib\Example\Tasking\Filters\IIR\expIirBiq_4_16.c, 
expIirBiq_4_16.cpp
Trilib\Example\GreenHills\Filters\IIR\expIirBiq_4_16.cpp, 
expIirBiq_4_16.c
Trilib\Example\GNU\Filters\IIR\expIirBiq_4_16.c

Cycle Count With DSP 
Extensions

Pre-kernel : 5

Kernel : if nBiq > 1

if nBiq = 1

Post-kernel : 2+2

Without DSP 
Extensions 

Pre-kernel : 5

Kernel : same as With DSP Extensions

IirBiq_4_16 IIR Filter, Coefficients - multiple of four, Sample 
processing (cont’d)

nBiq 4×[ ] 2+

nBiq 4×[ ] 1+
User’s Manual 4-180 V 1.2, 2000-01



 Function Descriptions
Post-kernel : 3+2

Code Size 78 bytes

IirBiq_4_16 IIR Filter, Coefficients - multiple of four, Sample 
processing (cont’d)
User’s Manual 4-181 V 1.2, 2000-01



 Function Descriptions
IirBiqBlk_4_16 IIR Filter, Coefficients - multiple of four, Block 
processing

Signature void IirBiqBlk_4_16(DataS   *X, 
                                DataS   *R, 
                                DataS   *H,
                                DataS   *DLY,
                                int         nBiq,
                                int         nX
                                );

Inputs X : Pointer to Input-Buffer

R : Pointer to Output-Buffer

H : Pointer to Coeff-Buffer

DLY : Pointer to Delay-Buffer

nBiq : Number of Biquads

nX : Size of Input-Buffer

Output DLY[nW] : Updated Delay-Buffer values

R[nX] : Output-Buffer

Return None

Description The IIR filter is implemented as a cascade of direct form II
Biquads. If number of biquads is ’n’, the filter order is 2*n. A
block of input is processed at a time and output for every
sample is stored in the output buffer. The filter operates on 16-
bit real input, 16-bit real coefficients and returns 16-bit real
output. The number of inputs is arbitrary, while the number of
coefficients is 4*(number of Biquads). Length of delay line is
2*(number of Biquads). Coeff-Buffer can be halfword/word
aligned in internal memory, but in external memory it should
be only halfword and not word aligned. This ensures that after
Inscale value is read, the coefficient array is word aligned.
Delay-Buffer can be halfword aligned in both internal and
external memory.
User’s Manual 4-182 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac16 *W;         //Ptr to Delay-Buffer
   frac16 *H0;        //Ptr to InScale
   frac16 *H;         //H0+1 - Ptr to Coefficients
   frac64 W64;
   frac64 acc;        //Filter result
   int i,j;
   InScale = *H0;     //InScale value is read
   H0++;              //Ptr to coefficients
   
   // Loop for Input-Buffer
   for(j=0;j<nX;j++)
   {
      W =DLY;
      H=H0
      acc =(frac64) (*(X+j) * InScale);
                      //X(n)scaled by InScale and stored in 19Q45 format

      //Biquad loop
      //’n’ refers to the current instant
      //Indices i and j of H(i) and W_j  in the comments are 
      //valid only for the first iteration. For subsequent iterations
      //they have to be incremented by 4 and 1 respectively
       
      for(i=0;i<nBiq;i++)
      {
         //W64 in 19Q45
         W64 = acc + ( *(H+2) * (*W) + *(H+3) * (*(W+1)) );
                      //W_1(n) = X(n) + H(3) * W_1(n-1) + H(4) * W_1(n-2)
         //acc in 19Q45
         acc = W64 +(frac64) ( (*H) * (*W)   + (*(H+1)) * (*(W+1)) ); 
                      //acc = W64 + H(1) * W_1(n-1) + H(2) * W_1(n-2)

         *(W+1) = *W; //Update the Delay line 
         *W =((_frac16 _sat)W64);
                      //Format the delay line value to 16-bit(1Q15) 
                      //saturated and store the updated value in memory
         W = W + 2;   //Ptr to W_2(n-1)
         H = H + 4;   //Ptr to H(5)
      }

IirBiqBlk_4_16 IIR Filter, Coefficients - multiple of four, Block 
processing (cont’d)
User’s Manual 4-183 V 1.2, 2000-01



 Function Descriptions
      (R+j) =((_frac16 _sat)acc);   
                      //Format the Filter output to 16-bit (1Q15)
                      //saturated value and store in output buffer
   }
}

Techniques • Use of packed data Load/Store
• Use of dual MAC instructions
• Intermediate results stored in a 64-bit register (16 guard

bits)
• Filter output converted to 16-bit with saturation
• Instruction ordering provided for zero overhead Load/Store

Assumptions • Input and output are in 1Q15 format 
• Coefficients are in 2Q14 format

IirBiqBlk_4_16 IIR Filter, Coefficients - multiple of four, Block 
processing (cont’d)
User’s Manual 4-184 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-45 IirBiqBlk_4_16

IirBiqBlk_4_16 IIR Filter, Coefficients - multiple of four, Block 
processing (cont’d)

aX
X(1)

.
X(n)

X(n+1)
.
.

X(0)

.

Input-Buffer
aR

R(1)
.

R(n)
R(n+1)

.

.

R(0)

.

Output-Buffer

1Q151Q15

Dual
MAC-1

Delay-Buffer aH

aW H(1)
H(2)
H(3)
H(4)

.

.

Inscale

H(4*nBiq)

Coeff-Buffer

Dual
MAC-2

2Q14

1Q15

1Q15

W1(n-2)
.

Wk(n-1)
Wk(n-2)

.
WnBiq(n-1)

W1(n-1)

WnBiq(n-2)
User’s Manual 4-185 V 1.2, 2000-01



 Function Descriptions
Implementation This IIR filter routine processes a block of input values at a 
time. The pointer to the input buffer is sent as an argument to 
the function. The output is stored in output buffer, the starting 
address of which is also sent as an argument to the function. 

Implementation details are same as that of IirBiq_4_16. The 
difference is than an additional loop is needed to calculate the 
output for every sample in the buffer. Hence, this loop is 
repeated as many times as the size of the input buffer.

Example Trilib\Example\Tasking\Filters\IIR\expIirBiqBlk_4_16.c, 
expIirBiqBlk_4_16.cpp
Trilib\Example\GreenHills\Filters\IIR
\expIirBiqBlk_4_16.cpp, expIirBiqBlk_4_16.c
Trilib\Example\GNU\Filters\IIR\expIirBiqBlk_4_16.c

Cycle Count Pre-loop : 1

Loop :  

Post-loop : 0+2

Code Size 98 bytes

IirBiqBlk_4_16 IIR Filter, Coefficients - multiple of four, Block 
processing (cont’d)

nX 7 nBiq 4×[ ] 4+ +{ } 1 2+ +×
User’s Manual 4-186 V 1.2, 2000-01



 Function Descriptions
IirBiq_5_16 IIR Filter, Coefficients - multiple of five, Sample 
processing

Signature DataS IirBiq_5_16(DataS           X, 
                              DataS           *H,
                              DataS           *DLY,
                              int                 nBiq
                              );

Inputs X : Real input value

H : Pointer to Coeff-Buffer

DLY : Pointer to Delay-Buffer

nBiq : Number of Biquads

Output DLY[nW] : Updated delay line is an implicit
output - Wi(n) and Wi(n-1) are
stored as Wi(n-1) and Wi(n-2) for
next sample computation 

Return R : Output value of the filter(48-bit
output value converted to 16-bit
with saturation).

Description The IIR filter is implemented as a cascade of direct form II
Biquads. If number of biquads is ’n’, the filter order is 2*n. A
single sample is processed at a time and output for that
sample is returned. The filter operates on 16-bit real input, 16-
bit real coefficients and returns 16-bit real output. The number
of inputs is arbitrary, while the number of coefficients is
5*(number of Biquads). Length of delay line is 2*(number of
Biquads). Coeff-Buffer and Delay-Buffer are halfword aligned
in both internal and external memory.
User’s Manual 4-187 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac16 *W;         //Ptr to Delay-Buffer
   frac16 W16;
   frac64 W64;
   frac64 HW64;
   frac64 acc;        //Filter result
   int i,j;
     
   acc =(frac64) (X); //Input stored in 19Q45 format     
   //Biquad loop.
   //’n’ refers to the current instant
   //Indices i and j of H(i) and W_j  in the comments are valid only 
   //for the first iteration. For subsequent iterations they
   // have to be incremented by 5 and 1 respectively
   //
   for(i=0;i<nBiq;i++)
   {
      //W64 in 19Q45
      W64 = acc + ( *(H+3) * (*W) + *(H+4) * (*(W+1)) );
                      //W_1(n) = acc + H(3) * W_1(n-1) + H(4) * W_1(n-2)
      W16 = (frac16 sat)W64;
                      //Format the delay line value W_1(n) to 16 bit 
                      //value with saturation       
      //HW64 in 19Q45
      HW64 = (frac64)(W16 * (*H));
                      //HW64 = H(0) * W_1(n)
      //acc in 19Q45
      acc = HW64 +(frac64) (*(H+1) * (*W)   + (*(H+2)) * (*(W+1))); 
                      //acc = H(0) * W_1(n)+ H(1) * W_1(n-1) +  H(2) * W_1(n-2)
      *(W+1) = *W;    //update the delay line
      *W = W16;       //update the delay line
      W = W + 2;      //Ptr to W_2(n-1)
      H = H + 4;      //Ptr to H(5)
   }
   R =(frac16 sat)acc);   
                      //Format the Filter output to 16-bit (1Q15)
                      //saturated value  
}

IirBiq_5_16 IIR Filter, Coefficients - multiple of five, Sample 
processing (cont’d)
User’s Manual 4-188 V 1.2, 2000-01



 Function Descriptions
Techniques • Use of packed data Load/Store
• Use of dual MAC instructions
• Intermediate results stored in a 64-bit register (16 guard

bits)
• Filter output converted to 16-bit with saturation
• Instruction ordering provided for zero overhead Load/Store

Assumptions • Inputs and outputs are in 1Q15 format
• Coefficients are in 2Q14 format

Memory Note

Figure 4-46 IirBiq_5_16

IirBiq_5_16 IIR Filter, Coefficients - multiple of five, Sample 
processing (cont’d)

Dual
MAC-2

Delay-Buffer aH

aW H(1)
H(2)
H(3)
H(4)

.

.

H(0)

H(5*nBiq-1)

Coeff-Buffer

Dual
MAC-1

1Q15

2Q14

W1(n-2)
.

Wk(n-1)
Wk(n-2)

.
WnBiq(n-1)

W1(n-1)

WnBiq(n-2)
User’s Manual 4-189 V 1.2, 2000-01



 Function Descriptions
Implementation In this implementation, there are five coefficients per biquad. 
The kth biquad uses the coefficients H(5k-5), H(5k-4), H(5k-3), 
H(5k-2) and H(5k-1), k=1,2,.....nBiq.

To perform two multiplication in one cycle using dual MAC, the 
values should be packed in one register. Hence, H(5k-4), 
H(5k-3) and H(5k-2), H(5k-1) are loaded in one cycle each 
using load word instruction. H(5k-5) is loaded separately 
using load halfword instruction.

The first dual MAC instruction performs a pair of 
multiplications and additions to generate the new delay line 
value for that biquad in one cycle according to the equation

[4.57]

where, R0(n) = X(n). 

This delay line value is multiplied by H(5k-5).

The second dual MAC uses the above result and performs
another pair of multiplication and additions to generate the
output for that biquad according to the equation

[4.58]

where, RnBiq(n) = R(n). 

Wk(n) and Wk(n-1) of the current sample become Wk(n-1) and
Wk(n-2) for the next sample computation. The Delay line is
updated accordingly in memory.

Hence a loop executed as many times as there are biquad
stages will generate the filter output, with each pass through
it yielding the output for that biquad stage.

IirBiq_5_16 IIR Filter, Coefficients - multiple of five, Sample 
processing (cont’d)

Wk n( ) Rk 1– n( ) H 5k 2–( ) Wk× n 1–( )+=

+ H 5K 1–( ) Wk× n 2–( )

Rk n[ ] H 5k 5–( ) Wk n( ) H 5k 4–( ) Wk n 1–( )×+×=

+ H 5K 3–( ) Wk× n 2–( )
User’s Manual 4-190 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Filters\IIR\expIirBiq_5_16.c, 
expIirBiq_5_16.cpp
Trilib\Example\GreenHills\Filters\IIR\expIirBiq_5_16.cpp, 
expIirBiq_5_16.c
Trilib\Example\GNU\Filters\IIR\expIirBiq_5_16.c

Cycle Count With DSP 
Extensions

Pre-kernel : 4

Kernel :  if nBiq > 1

if nBiq = 1

Post-kernel : 2+2

Without DSP 
Extensions

Pre-kernel : 4

Kernel : same as With DSP Extensions

Post-kernel : 3+2

Code Size 92 bytes

IirBiq_5_16 IIR Filter, Coefficients - multiple of five, Sample 
processing (cont’d)

nBiq 7×[ ] 2+

nBiq 7×[ ] 1+
User’s Manual 4-191 V 1.2, 2000-01



 Function Descriptions
IirBiqBlk_5_16 IIR Filter, Coefficients - multiple of five, Block 
processing

Signature void IirBiqBlk_5_16(DataS   *X, 
                               DataS   *R, 
                               DataS   *H,
                               DataS   *DLY,
                               int         nBiq,
                               int         nX   
                               );

Inputs X : Pointer to Input-Buffer

R : Pointer to Output-Buffer

H : Pointer to Coeff-Buffer

DLY : Pointer to Delay-Buffer

nBiq : Number of Biquads

nX : Size of Input-Buffer

Output DLY[nW] : Updated Delay-Buffer values

R[nX] : Output-Buffer

Return None

Description The IIR filter is implemented as a cascade of direct form II
Biquads. A block of input is processed at a time and output for
every sample is stored in the output buffer. The filter operates
on 16-bit real input, 16-bit real coefficients and returns 16-bit
real output. The number of inputs is arbitrary, while the
number of coefficients is 5*(number of Biquads). Length of
delay line is 2*(number of biquads). Both Coeff-Buffer and
Delay-Buffer are halfword aligned.
User’s Manual 4-192 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac16 *W;         //Ptr to Delay-Buffer
   frac16 *H0;        //Ptr to Coeff-Buffer
   frac16 W16;
   frac64 W64;
   frac64 HW64;
   frac64 acc;        //Filter result
   int i,j;
   
   //Loop for Input-Buffer
   for(j=0;j<nX;j++)
   {
      W =DLY;
      H=H0;           //Ptr to coefficients initialized
      acc =(frac64) *(X+j);
                      //X(n) stored in 19Q45 format
      //Biquad loop
      //’n’ refers to the current instant
      //Indices i and j of H(i) and W_j  in the comments are valid 
      //only for the first iteration. For subsequent iterations
      //they have to be incremented by 5 and 1 respectively
      for(i=0;i<nBiq;i++)
      {
         //W64 in 19Q45
         W64 = acc + ( *(H+3) * (*W) + (*(H+4)) * (*(W+1)) );
                      //W_1(n) = acc + H(3) * W_1(n-1) + H(4) * W_1(n-2)
         W16 = (frac16 sat)W64;
                      //Format the delay line value W_1(n) to 16 bit 
                      //value with saturation       
         //HW64 in 19Q45
         HW64 = (frac64)(W16 * (*H));
                      // HW64 = H(0) * W_1(n)
         //acc in 19Q45
         acc = HW64 +(frac64) ( (*(H+1) * (*W)   + (*(H+2)) * (*(W+1)) ); 
                      //acc = H(0) * W_1(n)+ H(1) * W_1(n-1) +  H(2) * W_1(n-2)
         *(W+1) = *W; //update the delay line 
         *W = W16;    //update the delay line 
         W = W + 2;   //Ptr to W_2(n-1)
         H = H + 4;   //Ptr to H(5)
      }

IirBiqBlk_5_16 IIR Filter, Coefficients - multiple of five, Block 
processing (cont’d)
User’s Manual 4-193 V 1.2, 2000-01



 Function Descriptions
      *(R+j) =((_frac16 _sat)acc);   
                      //Format the Filter output to 16-bit (1Q15)
                      //saturated value and store in output buffer

   }
}

Techniques • Use of packed data Load/Store.
• Use of dual MAC instructions.
• Intermediate results stored in a 64-bit register(16 guard

bits)
• Filter output converted to 16-bit with saturation
• Instruction ordering provided for zero overhead Load/Store

Assumptions • Input and output are in 1Q15 format 
• Coefficients are in 2Q14 format

IirBiqBlk_5_16 IIR Filter, Coefficients - multiple of five, Block 
processing (cont’d)
User’s Manual 4-194 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-47 IirBiqBlk_5_16

IirBiqBlk_5_16 IIR Filter, Coefficients - multiple of five, Block 
processing (cont’d)

aX

X(1)
.

X(n)
X(n+1)

.

.

X(0)

.

Input-Buffer
aR

R(1)
.

R(n)
R(n+1)

.

.

R(0)

.

Output-Buffer

1Q151Q15

Dual
MAC-2

Delay-Buffer aH

aW H(1)
H(2)
H(3)
H(4)

.

.

H(0)

H(5*nBiq-1)

Coeff-Buffer

Dual
MAC-1

1Q15

2Q14

W1(n-2)
.

Wk(n-1)
Wk(n-2)

.
WnBiq(n-1)

W1(n-1)

WnBiq(n-2)
User’s Manual 4-195 V 1.2, 2000-01



 Function Descriptions
Implementation This IIR filter routine processes a block of input values at a 
time. The pointer to the input buffer is sent as an argument to 
the function. The output is stored in output buffer, the starting 
address of which is also sent as an argument to the function. 

Implementation details are same as that of IirBiq_5_16. The 
difference is that an additional loop is needed to calculate the 
output for every sample in the buffer. Hence, this loop is 
repeated as many times as the size of the input buffer.

Example Trilib\Example\Tasking\Filters\IIR\expIirBiqBlk_5_16.c, 
expIirBiqBlk_5_16.cpp
Trilib\Example\GreenHills\Filters\IIR
\expIirBiqBlk_5_16.cpp, expIirBiqBlk_5_16.c
Trilib\Example\GNU\Filters\IIR\expIirBiqBlk_5_16.c

Cycle Count Pre-loop : 1

Loop :  

Post-loop : 0+2

Code Size 112 bytes

IirBiqBlk_5_16 IIR Filter, Coefficients - multiple of five, Block 
processing (cont’d)

nX 6 nBiq 7×[ ] 4+ +{ } 1 2+ +×
User’s Manual 4-196 V 1.2, 2000-01



 Function Descriptions
4.6 Adaptive Digital Filters

An adaptive filter adapts to changes in its input signals automatically.

Conventional linear filters are those with fixed coefficients.These can extract signals
where the signal and noise occupy fixed and separate frequency bands. Adaptive filters
are useful when there is a spectral overlap between the signal and noise or if the band
occupied by the noise is unknown or varies with time. In an adaptive filter, the filter
characteristics are variable and they adapt to changes in signal characteristics. The
coefficients of these filters vary and cannot be specified in advance. 

The self-adjusting nature of adaptive filters is largely used in applications like telephone
echo cancelling, radar signal processing, equalization of communication channels etc.

Adaptive filters with the LMS (Least Mean Square) algorithm are the most popular kind.
The basic concept of an LMS adaptive filter is as follows.

Figure 4-48 Adaptive filter with LMS algorithm

The filter part is an N-tap filter with coefficients H0, H1,..., HnH-1, whose input signal is
X(n) and output is R(n). The difference between the actual output R(n) and a desired
output D(n), gives an error signal

[4.59]

+X(n) D(n)
FIR

(H0, H1, ... HnH-1)

R(n)

LMS Algorithm

Err n( ) D n( ) R n( )–=
User’s Manual 4-197 V 1.2, 2000-01



 Function Descriptions
The algorithm uses the input signal X(n) and the error signal Err(n) to adjust the filter
coefficients H0, H1,..., HnH-1, such that the difference, Err(n) is minimized on a criterion.
The LMS algorithm uses the minimum mean square error criterion

min H0, H1,..., HnH-1 E(Err2(n)) [4.60]

Where E denotes statistical expectation.The algorithm of a delayed LMS adaptive filter
is mathematically expressed as follows.

[4.61]

[4.62]

[4.63]

where >0 is a constant called step-size. Note that the filter coefficients are time
varying. Hn(i) denotes the value of the i-th coefficient at time n. The algorithm has three
stages.

1. The filter output R(n) is produced.
2. The error value from previous iteration is read and coefficients are updated.
3. The expected value is read, error is calculated and stored in memory.

Step-size  controls the convergence of the filter coefficients to the optimal (or
stationary) state. The larger the  value, faster the convergence of the adaptation. On
the other hand, a large value of  also leads to a large variation of Hn(i) (a bad accuracy)
and thus a large variation of the output error (a large residual error). Therefore, the
choice of  is always a trade-off between fast convergence and high accuracy.  must
not be larger than a certain threshold. Otherwise, the LMS algorithm diverges.

4.6.1 Delayed LMS algorithm for an adaptive real FIR

Delayed LMS algorithm for an adaptive real FIR filter can be represented by the following
mathematical equation.

[4.64]

[4.65]

[4.66]

R n( ) Hn 1– 0( ) X n( )× Hn 1– 1( ) X n 1–( )× Hn 2– 2( ) X n 2–( ) …+×+ +=

+ Hn 1– nH 1–( ) X n nH– 1+( )×

Hn k( ) Hn 1– k( ) X n k–( ) µ× Errn 1–×+=

Errn D n( ) R n( )–=

µ

µ
µ

µ

µ µ

R n( ) Hn 1– k( ) X n k–( )×

K 0=

nH 1–

∑=

Hn k( ) Hn 1– k( ) X n k–( ) U Errn 1–××+=

Errn D n( ) R n( )–=
User’s Manual 4-198 V 1.2, 2000-01



 Function Descriptions
where,                                               

4.6.2 Delayed LMS algorithm for an adaptive Complex FIR

Delayed LMS algorithm for an adaptive Complex FIR filter can be represented by the
following mathematical equations.

[4.67]

[4.68]

[4.69]

[4.70]

[4.71]

R(n) : output sample of the filter at index n

X(n) : input sample of the filter at index n 

D(n) : expected output sample of the filter at index n

Hn(0),Hn(1),.. : filter coefficients at index n

nH : filter order (number of coefficients)

Errn : error value at index n which will be used to 
update coefficients at index n+1

Rr n( ) Hrn 1– k( ) Xr n k–( )× Hin 1– k( ) Xi n k–( )×–[ ]

K 0=

nH 1–

∑=

Ri n( ) Hrn 1– k( ) Xi n k–( )× Hin 1– k( ) Xr n k–( )×+[ ]

K 0=

nH 1–

∑=

Hrn k( ) Hrn 1– k( )=

+ U Xr n k–( ) Errrn 1– Xi n k–( ) Errin 1–×–×( )×

Hin k( ) Hin 1– k( )=

+ U Xr n k–( ) Errin 1– Xi n k–( ) Errrn 1–×+×( )×

Errrn Dr n( ) Rr n( )–=
User’s Manual 4-199 V 1.2, 2000-01



 Function Descriptions
[4.72]

where,                                               

4.6.3 Descriptions

The following are adaptive FIR filter functions with 16 bit input and 16 bit coefficients.

• Real, Coefficients -  multiple of four, Sample processing
• Real, Coefficients -  multiple of four, Block processing
• Complex, Coefficients -  multiple of four, Sample processing
• Complex, Coefficients -  multiple of four, Block processing

The following are mixed adaptive FIR filter functions with 16 bit input and 32 bit
coefficients.

• Real, Coefficients - multiple of two, Sample Processing
• Real, Coefficients - multiple of two, Block Processing

Rr(n) : Real output sample of the filter at index n

Ri(n) : Imag output sample of the filter at index n

Xr(n) : Real input sample of the filter at index n

Xi(n) : Imag input sample of the filter at index n

Dr(n) : Real desired output sample of the filter at index n

Di(n) : Imag desired output sample of the filter at index n

Hrn(0),Hrn(1),.. : filter coefficients (real) at index n

Hin(0),Hin(1),.. : filter coefficients (imag) at index n

nH : filter order (number of coefficients)

Errn : error value at index n which will be used to 
update coefficients at index n+1

Errin Di n( ) Ri n( )–=
User’s Manual 4-200 V 1.2, 2000-01



 Function Descriptions
Dlms_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Sample Processing

Signature DataS Dlms_4_16(DataS             X,
                              DataS             *H,
                              cptrDataS       *DLY,
                              DataS             D,
                              DataS             *Err,
                              DataS             U
                        );

Inputs X : Real Input Value

H : Pointer to Coeff-Buffer 

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct 

D : Real expected value

Err : Pointer to Error value

U : Step size

Output DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

H(nH) : Modified Coeff-Buffer

Return R : Output value of the filter (48-bit
output value converted to 16-bit
with saturation)

Description Delayed LMS algorithm implemented for adaptive FIR filter, 
FIR filter transversal structure (direct form), Single sample 
processing, 16-bit fractional input, coefficients and output 
data format, Optimal implementation, requires filter order to 
be multiple of four. 
User’s Manual 4-201 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;        //filter result
   frac16 circ *aDLY = &DLY;
                      //ptr to Circ-ptr of Delay-Buffer
   int j;             
   //Error value multiplied by step size
   uerr = (frac16 rnd)(*Err * U);
   //store input value in Delay-Buffer at the position 
   //of the oldest value
   *DLY = X;
   acc = 0;
   k = 0;
   //tap loop
   //The index i and j of H_n-1(i) and X(j) in the comments are valid only
   //for the first iteration.For each next iteration it has to be  
   //incremented and decremented by 4 respectively.
   for (j=0; j<nH/4; j++)
   {
      acc = acc + (frac64)[(*(H+k) * (*(DLY + k)) 
                            +(*(H+k+1)) * (*(DLY+k+1))];
                      //acc = acc + X(n)* H_n-1(0) + X(n-1) * H_n-1(1)
      acc = acc + (frac64)[(*(H+k+2) * (*(DLY+k+2))+
                           (*(H+k+3)) * (*(DLY+k+3));
                      //acc = X(n-2) * (H_n-1(2) + X(n-3) * H_n-1(3)
      //coefficient update
      *(H+k) = (frac16 sat rnd)((*(H+k)) + uerr * (*(DLY+k)));
      *(H+k+1) = (frac16 sat rnd)((*(H+k+1)) + uerr * (*(DLY+k+1)));
      *(H+k+2) = (frac16 sat rnd))(*(H+k+2) + uerr * (*(DLY+k+2)));
      *(H+k+3) = (frac16 sat rnd)((*(H+k+3)) + uerr * (*(DLY+k+3)));
      
      k = k + 4;
    }
    //Set DLY.index to the oldest value in Delay-Buffer 
    DLY--;
    aDLY = *DLY;

    //format the filter output from 48-bit to 16-bit saturated value
    R = (frac16 sat)acc;
    //calculate error for the current output
    *Err = D - R;
    return R;
}    

Dlms_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Sample Processing (cont’d)
User’s Manual 4-202 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop unrolling, four taps/loop  
• Use of packed data Load/Store
• Delay line implemented as circular-buffer 
• Use of dual MAC instructions
• Intermediate result stored in 64-bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Filter size must be multiple of four
• Inputs, outputs, coefficients are in 1Q15 format
• Delay-Buffer is in Internal Memory

Memory Note

Figure 4-49 Dlms_4_16

Dlms_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Sample Processing (cont’d)

Delay-Buffer

aDLYcaDLY
.

x(n-nH+1)

x(n)

x(n-1)

x(n-2)

.

.

.

1Q15

doubleword
aligned

Hn-1(1)

.

.

.

.

.

Hn-1(0)

Hn-1(nH-1)

1Q15

Dual
MAC

aH

Coeff-Buffer
X

(Must be in IntMem)
User’s Manual 4-203 V 1.2, 2000-01



 Function Descriptions
Figure 4-50 Dlms_4_16 Coefficient update

Dlms_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Sample Processing (cont’d)

Delay-Buffer

aDLYcaDLY
.

x(n-nH+1)

x(n)

x(n-1)

x(n-2)

.

.

.

1Q15

doubleword
aligned

Error Value

Dual Mac

Coefficient
Update

Hn(1)

.

.

.

.

.

Hn(0)

Hn(nH-1)

1Q15

Updated
Coefficient

Errn = D - R

Errn-1

aH
User’s Manual 4-204 V 1.2, 2000-01



 Function Descriptions
Implementation LMS algorithm has been used to realize an adaptive FIR filter. 
The implemented filter is a Delayed LMS adaptive filter. That 
is, the updation of coefficients in the current instant is done 
using the error in the previous output.

The FIR filter is implemented using transversal structure and 
is realized as a tapped delay line.

This routine processes one sample at a time and returns 
output of that sample. The input for which the output is to be 
calculated is sent as an argument to the function.

TriCore’s load doubleword instruction loads four delay line 
values and four coefficients in one cycle. Dual MAC 
instruction performs a pair of multiplications and additions 
according to the equation

[4.73]

where, k=0,1,...., nH-1.

The coefficient is updated using error from the previous
output, i.e., errn-1. As Hn-1(0) and Hn-1(1) are packed in one
register, one dual MAC instruction can be used to update both
the coefficients in one cycle. TriCore provides a dual MAC
instruction which performs packed multiplication and addition
with rounding and saturation. Hence the two coefficients are
updated at a time and packed in one register according to the
equation

[4.74]

where, k=0,1,...,nH-1.

Dlms_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Sample Processing (cont’d)

acc acc X n k–( ) Hn 1– k( ) X n k 1–( )–( )
Hn 1– k 1+( )⋅

+⋅+=

Hn k( ) Hn 1– k( ) X n k–( ) Errn 1–⋅+=

Hn k 1+( ) Hn 1– k 1+( ) X n k 1–( )–( ) Errn 1–⋅+=
User’s Manual 4-205 V 1.2, 2000-01



 Function Descriptions
Thus by using four dual MAC operations, four coefficients are
used and updated on a single pass through the loop. This
brings down the loop count by a factor of four. For the sake of
optimization one set of four dual MACs are performed outside
the loop. Hence loop is unrolled. This implies it is executed
(nH/4-1) times. For delay line, circular addressing mode is
used which helps in efficient delay update. The size of the
circular delay buffer is equal to the filter order, i.e., the number
of coefficients. Circular buffer needs doubleword alignment
and to use load doubleword instruction, size of the buffer
should be multiple of eight bytes. This implies that the
coefficients should be multiple of four.

Note: To use load doubleword instruction for delay line, the
delay-buffer should be in internal memory only.

Example Trilib\Example\Tasking\Filters\Adaptive\expDlms_4_16.c, 
expDlms_4_16.cpp
Trilib\Example\GreenHills\Filters\Adaptive
\expDlms_4_16.cpp, expDlms_4_16.c
Trilib\Example\GNU\Filters\Adaptive\expDlms_4_16.c

Cycle Count With DSP 
Extensions

Pre-kernel : 12

Kernel :  

if TapLoopCount > 1

if TapLoopCount = 1

Post-kernel : 4+2

Dlms_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Sample Processing (cont’d)

nH
4

------- 1– 4 2+×

nH
4

------- 1– 4 1+×
User’s Manual 4-206 V 1.2, 2000-01



 Function Descriptions
 

Without DSP 
Extensions

Pre-kernel : 12

Kernel : same as With DSP Extensions

Post-kernel : 5+2

Code Size 130 bytes

Dlms_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Sample Processing (cont’d)
User’s Manual 4-207 V 1.2, 2000-01



 Function Descriptions
DlmsBlk_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Block Processing

Signature void DlmsBlk_4_16(DataS         *X,                                    
                               DataS           *R,      
                               cptrDataS      H,     
                               cptrDataS     *DLY,
                               int                  nX,
                               DataS            *D,
                               DataS            *Err,
                               DataS            U
                               );

Inputs X : Pointer to Input-Buffer

R : Pointer to Output-Buffer

H : With DSP Extension - circular 
pointer of Coeff-Buffer of size nH
Without DSP Extension - circ-
Struct. Whose members are base 
address, size and index

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct 

D : Pointer to Desired-Output-Buffer

Err : Pointer to Error value

U : Step size

Output DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

H(nH) : Modified Coeff-Buffer

R(nX) : Output-Buffer

Return None

Description Delayed LMS algorithm implemented for adaptive FIR filter, 
FIR filter transversal structure (direct form), Block processing, 
16-bit fractional input, coefficients and output data format, 
Optimal implementation, requires filter order to be multiple of 
four. 
User’s Manual 4-208 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac64 acc;        //filter result
   frac16 circ *aDLY = &DLY;
                      //ptr to Circ-ptr of Delay-Buffer
   int i, j;
   //loop for input buffer
   for (i=0; i<nX; i++)
   {
      //Error value multiplied by step size
      uerr = (frac16 rnd)(*Err * U);
      //store input value in Delay-Buffer at the position 
      //of the oldest value
      *DLY = *X++;
      acc = 0;
      k = 0;
      //tap loop
      for (j=0; j<nH/4; j++)
      {
         acc = acc + (frac64)[(*(H+k) * (*(DLY + k)) 
                              +(*(H+k+1)) * (*(DLY+k+1))];
                      //acc = acc + X(n)* H_n-1(0) + X(n-1) * H_n-1(1)
         acc = acc + (frac64)[(*(H+k+2) * (*(DLY+k+2))+
                              (*(H+k+3)) * (*(DLY+k+3));
                      //acc = X(n-2) * (H_n-1(2) + X(n-3) * H_n-1(3)
         //coefficient update
         *(H+k) = (frac16 sat rnd)((*(H+k)) + uerr * (*(DLY+k)));
         *(H+k+1) = (frac16 sat rnd)((*(H+k+1)) + uerr * (*(DLY+k+1)));
         *(H+k+2) = (frac16 sat rnd))(*(H+k+2) + uerr * (*(DLY+k+2)));
         *(H+k+3) = (frac16 sat rnd)((*(H+k+3)) + uerr * (*(DLY+k+3)));
         k = k + 4;
       }
       //Set DLY.index to the oldest value in Delay-Buffer 
       DLY--;
       aDLY = *DLY;
       //format the filter output from 48-bit to 16-bit saturated value
       //and store to Output-Buffer
       *R = (frac16 sat)acc;
       //calculate error for the current output
       *Err = *D++ - *R++;
   }
}       

DlmsBlk_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Block Processing (cont’d)
User’s Manual 4-209 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop unrolling, four taps/loop  
• Use of packed data Load/Store
• Delay line implemented as circular-buffer 
• Use of dual MAC instructions
• Intermediate result stored in 64-bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Filter size is a multiple of four
• Inputs, outputs, coefficients are in 1Q15 format
• Delay-Buffer is in internal memory

Memory Note

Figure 4-51 DlmsBlk_4_16

DlmsBlk_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Block Processing (cont’d)

Input-Buffer Delay-Buffer

aX

aDLYcaDLY
.

x(n-nH+1)

x(n)

x(n-1)

x(n-2)

.

.

.

1Q15

doubleword
aligned

Hn-1(1)

.

.

.

.

.

Hn-1(0)

Hn-1(nH-1)

1Q15

doubleword
aligned

Dual
MAC

X(1)

.

.

.

X(n)

.

X(0)

.

aH

Coeff-Buffer

halfword
aligned

1Q15

caH

(Must be in IntMem)
User’s Manual 4-210 V 1.2, 2000-01



 Function Descriptions
Figure 4-52 DlmsBlk_4_16 Coefficient update

DlmsBlk_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Block Processing (cont’d)

Delay-Buffer

aDLYcaDLY
.

x(n-nH+1)

x(n)

x(n-1)

x(n-2)

.

.

.

1Q15

doubleword
aligned

Desired Output
Buffer

1Q15

aD

D(1)

.

.

.

.

D(n)

D(0)

.

Output-Buffer

1Q15

aR

R(1)

.

.

.

.

R(n)

R(0)

.

Error Value

Dual Mac

Coefficient
Update

Hn(1)

.

.

.

.

.

Hn(0)

Hn(nH-1)

1Q15

doubleword
aligned

Updated
Coefficient

Errn = D(n) - R(n)

Errn-1

aH
User’s Manual 4-211 V 1.2, 2000-01



 Function Descriptions
Implementation This DLMS routine processes a block of input values at a time. 
The pointer to the input buffer is sent as an argument to the 
function. The output is stored in output buffer, the starting 
address of which is also sent as an argument to the function. 

Implementation details are same as Dlms_4_16, except that 
the Coeff-Buffer is also circular and needs doubleword 
alignment. The advantage of using circular buffer for 
coefficients is efficient pointer update. In this implementation 
while exiting the tap loop, the first two coefficients are already 
loaded for the next input value. This helps in saving one cycle 
in the next sample processing.

Example Trilib\Example\Tasking\Filters\Adaptive
\expDlmsBlk_4_16.c, expDlmsBlk_4_16.cpp
Trilib\Example\GreenHills\Filters\Adaptive
\expDlmsBlk_4_16.cpp, expDlmsBlk_4_16.c
Trilib\Example\GNU\Filters\Adaptive
\expDlmsBlk_4_16.c

Cycle Count With DSP 
Extensions

Pre-loop : 7

Loop :  

Post-loop : 1+2

Without DSP 
Extensions

Pre-loop : 8

Loop : same as With DSP Extensions

DlmsBlk_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Block Processing (cont’d)

nX 8
nH
4

------- 1– 
  4 6+×+

 
 
 

×

+1+2
User’s Manual 4-212 V 1.2, 2000-01



 Function Descriptions
 

Post-loop : 1+2

Code Size 166 bytes

DlmsBlk_4_16 Adaptive FIR Filter, Coefficients - multiple of four, 
Block Processing (cont’d)
User’s Manual 4-213 V 1.2, 2000-01



 Function Descriptions
CplxDlms_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Sample Processing

Signature DataL CplxDlms_4_16(CplxS              X,    

                                     DataS             * H,

                                     cptrDataS       *DLYr,

                                     cptrDataS       *DLYi,

                                     CplxS             D,

                                     CplxS             *Err,

                                     DataS             U

                                     );

Inputs X : Complex input value 

H : Pointer to Cplx-Coeff-Buffer  

DLYr : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer 
(Real)
Without DSP Extension - Pointer to 
Circ-Struct

DLYi : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer 
(Imag)
Without DSP Extension - Pointer to 
Circ-Struct

D : Desired complex value

Err : Pointer to complex Error value

U : Step size

Output DLYr : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer (Real)

DLYi : Updated circular pointer with index
set to the oldest value of the filter
Delay-Buffer (Imag)

H(nH*2) : Modified Coeff-Buffer (Real and
Imag)

Return R : Output value of the filter (48-bit
output value converted to 16-bit
with saturation)
User’s Manual 4-214 V 1.2, 2000-01



 Function Descriptions
Description Delayed LMS algorithm implemented for adaptive Complex 
FIR filter, FIR filter transversal structure (direct form), Single 
sample processing, 16-bit fractional input, coefficients and 
output data format, Optimal implementation, requires filter 
order to be multiple of four. 

Pseudo code

{
   frac64 accr,acci;  //Filter result
   int i,j,k;
   frac16circ  *aDLYr=&DLYr, *aDLYi=&DLYi;
                      //Ptr to circ-ptr of real and imaginary Delay-Buffer
   //Error value multiplied by step size 
   uerrr = (frac16 rnd)(*Errr * U);
   uerri = (frac16 rnd)(*Erri * U);

   //Store input value in Delay-Buffer at the position of the 
   //oldest value
   *DLYi = Xi         //Imag part of Input is stored in delay line(imag)
   *DLYr = Xr         //Real part of Input is stored in delay line(real)

   accr = 0.0;
   acci = 0.0;    

   k=0;
   //tap loop
   for(j=0; j<nH/2; j++)
   {
     //Filter result
     //Imag
     acci += (frac64)(*(H+k) * (*(DLYi+k)) + (*(H+k+1) * (*(DLYi+k+1)));
                      //acci += Xi(n) * Hr_n-1(0) + Xi(n-1) * Hr_n-1(1) 
     acci -= (frac64)(*(H+k+2) * (*(DLYr+k)) + (*(H+k+3) * (*(DLYr+k+1)));
                      //acci += Xr(n) * Hi_n-1(0) + Xr(n-1) * Hi_n-1(1) 
     //Real
     accr += (frac64)(*(H+k) * (*(DLYr+k)) + (*(H+k+1) * (*(DLYr+k+1)));
                      //accr += Xr(n) * Hr_n-1(0) +  Xr(n-1) * Hr_n-1(1) 
     accr -= (frac64)(*(H+k+2) *(*(DLYi+k)) + (*(H+k+3) * (*(DLYi+k+1))); 
                      //accr -= Xi(n) * Hi_n-1(0) +  Xi(n-1) * Hi_n-1(1) 

CplxDlms_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Sample Processing (cont’d)
User’s Manual 4-215 V 1.2, 2000-01



 Function Descriptions
            //Coefficient update
            //Real_i
            *(H+k) = (frac16 sat rnd)(*(H+k) + (uerrr * (*(DLYr+k)));
                      //Hr_n(0) = Hr_n-1(0) + Xr(n) * Errr_n-1
            *(H+k) = (frac16 sat rnd)(*(H+k) - (uerri * (*(DLYi+k)));
                      //Hr_n(0) -= Xi(n) * Erri_n-1 
                      //Real_i+1
            *(H+k+1) = (frac16 sat rnd)(*(H+k+1) + (uerrr * (*DLYr+k+1)));
                      //Hr_n(1) = Hr_n-1(1) + Xr(n-1) * Errr_n-1
            *(H+k+1) = (frac16 sat rnd)(*(H+k+1) - (uerri * (*(DLYi+k+1)));
                      //Hr_n(1) -= Xi(n-1) * Erri_n-1 

            //Imag_i
            *(H+k+2) = (frac16 sat rnd)(*(H+k+2) + (uerri * (*(DLYr+k)));
                      //Hi_n(0) = Hi_n-1(0) + Xr(n) * Erri_n-1 
            *(H+k+2) = (frac16 sat rnd)(*(H+k+2) + (uerrr * (*(DLYi+k)));
                      //Hi_n(0) += Xi(n) * Errr_n-1 
            //Imag_i+1
            *(H+k+3) = (frac16 sat rnd)(*(H+k+3) + (uerri * (*(DLYr+k+1)));
                      //Hi_n(1) = Hi_n-1(1) + Xr(n-1) * Erri_n-1
            *(H+k+3) = (frac16 sat rnd)(*(H+k+3) + (uerrr * (*(DLYi+k+1)));
                      //Hi_n(1) += Xi(n-1) * Errr_n-1 

            k=k+4;
         }

        //Set DLYr.index and DLYi.index to the oldest value in Delay-Buffer 
        *DLYr--;
        *DLYi--;
        aDLYr = &DLYr;
        aDLYi = &DLYi;

    //Format the real and imaginary parts of the filter output from
    //48-bit to 16-bit saturated values and pack them in the return 
    //register (Rr : Ri)
        
        RLo = (frac16 sat)acci;
        RHi = (frac16 sat)accr;

        //Calculate error in current output
        *Err = D - R;
        
     }
}

CplxDlms_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Sample Processing (cont’d)
User’s Manual 4-216 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop unrolling, four taps/loop
• Use of packed data Load/Store
• Delay line implemented as circular-buffer
• Use of dual MAC instructions
• Intermediate result stored in 64-bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Filter size is a multiple of four
• Inputs, outputs, coefficients are in 1Q15 format

CplxDlms_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Sample Processing (cont’d)
User’s Manual 4-217 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-53 CplxDlms_4_16

CplxDlms_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Sample Processing (cont’d)

Delay-Buffer
(Real)

aDLYrcaDLYr

.

Xr(n-nH+1)

Xr(n)

Xr(n-1)

Xr(n-2)

.

.

.

Dual
MAC

Real 1

1Q15

doubleword
aligned

aDLYi caDLYi

.

Xi(n-nH+1)

Xi(n)

Xi(n-1)

Xi(n-2)

.

.

.

1Q15

doubleword
aligned

Hrn-1(1)

Hin-1(0)

Hin-1(1)

.

.

Hin-1(H-2)

Hrn-1(0)

Hin-1(H-1)

1Q15

Dual
MAC

Real 2

Dual
MAC

Imag 1

Dual
MAC

Imag 2

Delay-Buffer
(Imag)

Xr Xi
User’s Manual 4-218 V 1.2, 2000-01



 Function Descriptions
Figure 4-54 CplxDlms_4_16

CplxDlms_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Sample Processing (cont’d)

Delay-Buffer
(Real)

aDLYrcaDLYr
.

Xr(n-nH+1)

Xr(n)

Xr(n-1)

Xr(n-2)

.

.

.

1Q15

doubleword
aligned

aDLYi caDLYi
.

Xi(n-nH+1)

Xi(n)

Xi(n-1)

Xi(n-2)

.

.

.

1Q15

doubleword
aligned

Delay-Buffer
(Imag)

Errin-1

Errrn-1

Complex Error
Value

Dual Mac
Real

Dual Mac
Imag

Dual Mac
Real

Dual Mac
Imag

Coefficient
Update

Hrn(1)

Hin(0)

Hin(1)

.

.

Hin(nH-2)

Hrn(0)

Hin(nH-1)

1Q15
halfword
aligned

Updated Coeff-
Buffer

aHErrrn = Dr - Rr

Errin = Di - Ri
User’s Manual 4-219 V 1.2, 2000-01



 Function Descriptions
Implementation Delayed LMS has been implemented for realizing an adaptive 
complex FIR filter. Circular addressing mode is used for 
Delay-Buffer. As the filter is complex, two delay buffers are 
initialized, one for real part of input and the other for imaginary 
part of the input. The real and imaginary part of the input are 
separated and they replace the oldest value in the 
corresponding delay buffers.

To make use of the dual MAC feature of TriCore, coefficients 
are arranged in a special way as shown in the memory note. 
Real parts of a pair of coefficients are packed in a register 
using load word instruction. The corresponding imaginary 
parts are packed into another register.

A pair of real part of input and a pair of imaginary part of input 
are also packed in two registers in one cycle each by using the 
load word instruction.

The complex multiplication requires four multiplications (real -
real, imaginary - imaginary, real - imaginary and imaginary-
real). Four dual MACs are used which perform each of the 
above multiplications for a pair of inputs at a time and 
accumulate the result separately for real and imaginary parts. 
Hence the loop is executed nH/2 times. Similarly coefficient 
updation requires four more dual MACs with rounding and 
saturation. Loop unrolling is done for efficient update of delay 
line. Thus tap loop is executed (nH/2-1) times. The 
accumulated real and imaginary parts of the result are 
formatted to 16-bit saturated value and packed into the return 
register.

Example Trilib\Example\Tasking\Filters\Adaptive
\expCplxDlms_4_16.c, expCplxDlms_4_16.cpp
Trilib\Example\GreenHills\Filters\Adaptive
\expCplxDlms_4_16.cpp, expCplxDlms_4_16.c
Trilib\Example\GNU\Filters\Adaptive
\expCplxDlms_4_16.c

CplxDlms_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Sample Processing (cont’d)
User’s Manual 4-220 V 1.2, 2000-01



 Function Descriptions
 

Cycle Count With DSP 
Extensions

Pre-kernel : 14

Kernel :

Post-kernel : 13+2

Without DSP 
Extensions

Pre-kernel : 3

Kernel : same as With DSP Extensions

Post-kernel : 13+2

Code Size 206 bytes

CplxDlms_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Sample Processing (cont’d)

8
nH
2

------- 1– 
  1+× 1+

 
 
 
User’s Manual 4-221 V 1.2, 2000-01



 Function Descriptions
CplxDlmsBlk_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Block Processing

Signature void CplxDlmsBlk_4_16(CplxS              *X,               
                                       CplxS             *R,
                                                  DataS               *H,                                      
                                       cptrDataS       *DLYr,  
                                       cptrDataS       *DLYi,  
                                       int                   nX,
                                       CplxS             *D,  
                                       CplxS             *Err,     
                                       DataS             U 
                                       );      

Inputs X : Pointer to complex Input-Buffer 

R : Pointer to complex Output-Buffer

H : Pointer to Cplx-Coeff-Buffer  

DLYr : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer 
(Real)
Without DSP Extension - Pointer to 
Circ-Struct

DLYi : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer 
(Imag)
Without DSP Extension - Pointer to 
Circ-Struct

nX : Size of complex Input-Buffer

D : Pointer to complex Desired-
Output-Buffer

Err : Pointer to complex Error value

U : Step size

Output DLYr : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer (Real)

DLYi : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer (Imag)
User’s Manual 4-222 V 1.2, 2000-01



 Function Descriptions
H(nH*2) : Modified Coeff-Buffer (Real and 
Imag)

R(nX) : Complex Output-Buffer

Return None

Description Delayed LMS algorithm implemented for adaptive Complex 
FIR filter, FIR filter transversal structure (direct form), Block 
processing, 16-bit fractional input, coefficients and output data 
format, Optimal implementation, requires filter order to be 
multiple of four. 

Pseudo code

{
   frac64 accr,acci;  //Filter result
   int i,j,k;
   frac16circ  *aDLYr=&DLYr, *aDLYi=&DLYi;   
                      //Ptr to circ-ptr of real and imaginary Delay-Buffer
   for(i=0; i<nX; i++)
      {
         //Error value multiplied by step size 
         uerrr = (frac16 rnd)(*Errr * U);
         uerri = (frac16 rnd)(*Erri * U);

         //Store input value in Delay-Buffer at the position of the 
         //oldest value
         *DLYi = *X++;//Imag part of Input 
         *DLYr = *X++;//Real part of Input

         accr = 0.0;
         acci = 0.0;    

         k=0;
         //tap loop

CplxDlmsBlk_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Block Processing (cont’d)
User’s Manual 4-223 V 1.2, 2000-01



 Function Descriptions
         for(j=0; j<nH/2; j++)
         {
            //Filter result
            //Imag
            acci += (frac64)(*(H+k) * (*(DLYi+k)) 
                             + (*(H+k+1) * (*(DLYi+k+1)));
                      //acci += Xi(n) * Hr_n-1(0) + Xi(n-1) * Hr_n-1(1) 
            acci -= (frac64)(*(H+k+2) * (*(DLYr+k)) + 
                             (*(H+k+3) * (*(DLYr+k+1)));
                      //acci += Xr(n) * Hi_n-1(0) + Xr(n-1) * Hi_n-1(1) 
            //Real
            accr += (frac64)(*(H+k) * (*(DLYr+k)) 
                             + (*(H+k+1) * (*(DLYr+k+1)));
                      //accr += Xr(n) * Hr_n-1(0) +  Xr(n-1) * Hr_n-1(1) 
            accr -= (frac64)(*(H+k+2) * (*(DLYi+k)) 
                             + (*(H+k+3) * (*(DLYi+k+1))); 
                      //accr -= Xi(n) * Hi_n-1(0) +  Xi(n-1) * Hi_n-1(1) 
            //Coefficient update
            //Real_i
            *(H+k) = (frac16 sat rnd)(*(H+k) + (uerrr * (*(DLYr+k)));
                      //Hr_n(0) = Hr_n-1(0) + Xr(n) * Errr_n-1
            *(H+k) = (frac16 sat rnd)(*(H+k) - (uerri * (*(DLYi+k)));
                      //Hr_n(0) -= Xi(n) * Erri_n-1 
                      //Real_i+1
            *(H+k+1) = (frac16 sat rnd)(*(H+k+1) + (uerrr * (*DLYr+k+1)));
                      //Hr_n(1) = Hr_n-1(1) + Xr(n-1) * Errr_n-1
            *(H+k+1) = (frac16 sat rnd)(*(H+k+1) - (uerri * (*(DLYi+k+1)));
                      //Hr_n(1) -= Xi(n-1) * Erri_n-1 

            //Imag_i
            *(H+k+2) = (frac16 sat rnd)(*(H+k+2) + (uerri * (*(DLYr+k)));
                      //Hi_n(0) = Hi_n-1(0) + Xr(n) * Erri_n-1 
            *(H+k+2) = (frac16 sat rnd)(*(H+k+2) + (uerrr * (*(DLYi+k)));
                      //Hi_n(0) += Xi(n) * Errr_n-1 
            //Imag_i+1
            *(H+k+3) = (frac16 sat rnd)(*(H+k+3) + (uerri * (*(DLYr+k+1)));
                      //Hi_n(1) = Hi_n-1(1) + Xr(n-1) * Erri_n-1
            *(H+k+3) = (frac16 sat rnd)(*(H+k+3) + (uerrr * (*(DLYi+k+1)));
                      //Hi_n(1) += Xi(n-1) * Errr_n-1 

            k=k+4;
         }

CplxDlmsBlk_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Block Processing (cont’d)
User’s Manual 4-224 V 1.2, 2000-01



 Function Descriptions
        //Set DLYr.index and DLYi.index to the oldest value in Delay-Buffer 
        *DLYr--;
        *DLYi--;
        aDLYr = &DLYr;
        aDLYi = &DLYi;

        //Format the real and imaginary parts of the filter output 
        //from 48 bit to 16-bit saturated values and store the      
        //result to Output-Buffer
        *RLo = (frac16 sat)acci;
        *RHi = (frac16 sat)accr;
        R++;
        //Calculate error in current output
        *Err = *D++ - *R++;
     
      }//end of indata loop 

}//end of main

Techniques • Loop unrolling, two taps/loop  
• Use of packed data Load/Store
• Delay line implemented as circular-buffer
• Use of dual MAC instructions
• Intermediate result stored in 64-bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store

Assumptions • Filter size is a multiple of four
• Inputs, outputs, coefficients are in 1Q15 format

CplxDlmsBlk_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Block Processing (cont’d)
User’s Manual 4-225 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-55 CplxDlmsBlk_4_16

CplxDlmsBlk_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Block Processing (cont’d)

Input-Buffer

Delay-Buffer (Real)

aX

aDLYrcaDLYr
.

Xr(n-nH+1)

Xr(n)

Xr(n-1)

Xr(n-2)

.

.

.

Dual MAC
Real 1

1Q15

1Q15

doubleword
aligned

aDLYi caDLYi
.

Xi(n-nH+1)

Xi(n)

Xi(n-1)

Xi(n-2)

.

.

.

1Q15

doubleword
aligned

Hrn-1(1)

Hi n-1(0)

Hi n-1(1)

.

.

Hin-1(H-2)

Hrn-1(0)

Hin-1(H-1)

1Q15

halfword aligned

Dual
MAC

Real 2

Dual
MAC

Imag 1

Dual
MAC

Imag 2

Delay-Buffer (Imag)

Xr(0)

Xi(1)

Xr(1)

.

Xi(n)

Xr(n)

Xi(0)

.

halfword aligned
User’s Manual 4-226 V 1.2, 2000-01



 Function Descriptions
Figure 4-56 CplxDlmsBlk_4_16 Coefficient update

CplxDlmsBlk_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Block Processing (cont’d)

Delay-Buffer (Real)

aDLYrcaDLYr
.

Xr(n-nH+1)

Xr(n)

Xr(n-1)

Xr(n-2)

.

.

.

1Q15

doubleword
aligned

aDLYi caDLYi
.

Xi(n-nH+1)

Xi(n)

Xi(n-1)

Xi(n-2)

.

.

.

1Q15
doubleword

aligned

Delay-Buffer (Imag)

Desired
Output Buffer

1Q15

aR

Dr(0)

Di(1)

Dr(1)

.

Di(n)

Dr(n)

Di(0)

.

Errin-1

Errrn-1

Output-Buffer

aR

Rr(0)

Ri(1)

Rr(1)

.

Ri(n)

Rr(n)

Ri(0)

.

Complex Error
Value

Dual Mac Real Dual Mac Imag

Dual Mac
Real

Dual Mac
Imag

Coefficient
Update

Hrn(1)

Hin(0)

Hin(1)

.

.

Hin(nH-2)

Hrn(0)

Hin(nH-1)

1Q15
halfword
aligned

Updated
Coeff- Buffer

Errrn = Dr(n) - Rr(n)

Errin = Di(n) - Ri(n)

1Q15

aH

halfword
aligned

halfword
aligned
User’s Manual 4-227 V 1.2, 2000-01



 Function Descriptions
Implementation This DLMS routine processes a block of input values at a time. 
The pointer to the input buffer is sent as an argument to the 
function. The output is stored in output buffer, the starting 
address of which is also sent as an argument to the function. 

Implementation details are same as CplxDlms_4_16. An 
additional loop is needed to calculate the output for every 
sample in the buffer. Hence, this loop is repeated as many 
times as the size of the input buffer.

Example Trilib\Example\Tasking\Filters\Adaptive
\expCplxDlmsBlk_4_16.c, expCplxDlmsBlk_4_16.cpp
Trilib\Example\GreenHills\Filters\Adaptive
\expCplxDlmsBlk_4_16.cpp, expCplxDlmsBlk_4_16.c
Trilib\Example\GNU\Filters\Adaptive
\expCplxDlmsBlk_4_16.c

Cycle Count With DSP 
Extensions

Pre-loop : 9

Loop :

Post-loop : 3+2

Without DSP 
Extensions

Pre-loop : 9

Loop : same as With DSP Extensions

Post-loop : 3+2

Code Size 252 bytes

CplxDlmsBlk_4_16 Adaptive Complex Filter, Coefficients - multiple of 
four, Block Processing (cont’d)

nX 8
nH
2

------- 1– 
  8 16+×+

 
 
 

×

+1+2
User’s Manual 4-228 V 1.2, 2000-01



 Function Descriptions
Dlms_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Sample Processing

Signature DataL Dlms_2_16x32(DataS             X,
                                   DataL             *H,
                                   cptrDataS       *DLY,
                                   DataL             D,
                                   DataL             *Err,
                                   DataL             U
                            );

Inputs X : Real Input Value

H : Pointer to Coeff-Buffer 

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct 

(nH) : Implicit filter order stored in Circ-Ptr 
DLY

D : Real expected value

Err : Pointer to Error value

U : Step size

Outputs DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

H(nH) : Modified Coeff-Buffer

Return R : Output value of the filter (32-bit
output)

Description Delayed LMS algorithm implemented for mixed adaptive FIR 
filter, FIR filter transversal structure (direct form), Single 
sample processing, 16-bit fractional input, 32-bit coefficients 
and output data format, Optimal implementation, requires 
filter order to be multiple of two. 
User’s Manual 4-229 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac32 acc;       //filter result
   frac16 circ *aDLY = &DLY;
                     //ptr to Circ-ptr of Delay-Buffer
   int j;             
   //Error value multiplied by step size
   uerr = (frac32)(*Err * U);
   //store input value in Delay-Buffer at the position 
   //of the oldest value
   *DLY = X;
   acc = 0;
   k = 0;
   //tap loop
   //The index i and j of H_n-1(i) and X(j) in the comments are valid only
   //for the first iteration.For each next iteration it has to be  
   //incremented and decremented by 2 respectively.
   for (j=0; j<nH/2; j++)
   {
       acc = acc + (frac32 sat)(*(H+k) * (*(DLY + k)));                             
                     //acc = acc + X(n)* H_n-1(0) 
       acc = acc + (frac32 sat)(*(H+k+1) * (*(DLY+k+1)));                          
                     //acc = X(n-1) * (H_n-1(1) 
      //coefficient update
      *(H+k) = (frac32 sat)((*(H+k)) + uerr * (*(DLY+k)));
      *(H+k+1) = (frac32 sat)((*(H+k+1)) + uerr * (*(DLY+k+1)));
           
      k = k + 2;
    }
    //Set DLY.index to the oldest value in Delay-Buffer 
    DLY--;
    aDLY = *DLY;
    //filter output stored to output buffer
    R = acc;
    //calculate error for the current output
    *Err = D - R;
    return R;
}    

Techniques • Loop unrolling, two taps/loop  
• Use of packed data Load/Store
• Delay line implemented as circular-buffer 
• Instruction ordering for zero overhead Load/Store

Dlms_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Sample Processing (cont’d)
User’s Manual 4-230 V 1.2, 2000-01



 Function Descriptions
Assumptions • Filter order is a multiple of two
• Inputs in 1Q15 format, all other parameters in 1Q31 format

Memory Note

Figure 4-57 Dlms_2_16x32

Dlms_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Sample Processing (cont’d)

Delay-Buffer

aDLYcaDLY
.

x(n-nH+1)

x(n)

x(n-1)

x(n-2)

.

.

.

1Q15

doubleword
aligned

Hn-1(1)

.

.

.

.

.

Hn-1(0)

Hn-1(nH-1)

1Q31

 MAC

aH

Coeff-Buffer
X

User’s Manual 4-231 V 1.2, 2000-01



 Function Descriptions
Figure 4-58 Dlms_2_16x32 Coefficient update

Dlms_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Sample Processing (cont’d)

Delay-Buffer

aDLYcaDLY
.

x(n-nH+1)

x(n)

x(n-1)

x(n-2)

.

.

.

1Q15

doubleword
aligned

Error Value

 MAC

Coefficient
Update

Hn(1)

.

.

.

.

.

Hn(0)

Hn(nH-1)

1Q31

Updated
Coefficient

Errn = D - R

Errn-1

aH
User’s Manual 4-232 V 1.2, 2000-01



 Function Descriptions
Implementation LMS algorithm has been used to realize an adaptive FIR filter. 
The implemented filter is a Delayed LMS adaptive filter i.e., 
the updation of coefficients in the current instant is done using 
the error in the previous output.

The FIR filter is implemented using transversal structure and 
is realized as a tapped delay line.

This routine processes one sample at a time and returns 
output of that sample. The input for which the output is to be 
calculated is sent as an argument to the function.

TriCore’s load word instruction loads two delay line values 
and two coefficients in one cycle each. MAC instruction 
performs a multiplication and an addition according to the 
equation

[4.75]

where, k=0,1,...., nH-1.

The coefficient is updated using error from the previous
output, i.e., errn-1. A MAC instruction updates a coefficient in
one cycle according to the equation

[4.76]

where, k=0,1,...,nH-1.

By using four MACs two coefficients are used and updated in
one pass through the loop. The loop is unrolled for efficient
pointer update. Hence tap loop is executed (nH/2 - 1) times.

For delay line, circular addressing mode is used. The size of
the circular delay buffer is equal to the filter order, i.e., the
number of coefficients. Circular buffer needs doubleword
alignment and to use load word instruction, size of the buffer
should be multiple of four bytes. This implies that the
coefficients should be multiple of two.

Dlms_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Sample Processing (cont’d)

acc acc X n k–( ) Hn 1– k( )⋅+=

Hn k( ) Hn 1– k( ) X n k–( ) Errn 1–⋅+=
User’s Manual 4-233 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Filters\Adaptive
\expDlms_2_16x32.c, expDlms_2_16x32.cpp
Trilib\Example\GreenHills\Filters\Adaptive
\expDlms_2_16x32.cpp, expDlms_2_16x32.c
Trilib\Example\GNU\Filters\Adaptive
\expDlms_2_16x32.c

Cycle Count With DSP 
Extensions

Pre-kernel : 12

Kernel :  

if LoopCount > 1

if LoopCount = 1

Post-kernel : 4+2

Without DSP 
Extensions

Pre-kernel : 12

Kernel : same as With DSP Extensions

Post-kernel : 4+2

Code Size 108 bytes

Dlms_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Sample Processing (cont’d)

nH
2

------- 1– 4 2+×

nH
2

------- 1– 4 1+×
User’s Manual 4-234 V 1.2, 2000-01



 Function Descriptions
DlmsBlk_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Block Processing

Signature void DlmsBlk_2_16x32(DataS         *X,                                    
                                     DataL           *R,      
                                     cptrDataL      H,     
                                     cptrDataS     *DLY,
                                     int                  nX,
                                     DataL            *D,
                                     DataL            *Err,
                                     DataL            U
                                    );

Inputs X : Pointer to Input-Buffer

R : Pointer to Output-Buffer

H : With DSP Extension - circular 
pointer of Coeff-Buffer of size nH
Without DSP Extension - circ-
Struct. Whose members are base 
address, size and index

DLY : With DSP Extension - Pointer to 
circular pointer of Delay-Buffer of 
size nH, where nH is the filter order
Without DSP Extension - Pointer to 
Circ-Struct 

(nH) : Implicit filter order stored in Circ-
Pointer DLY

D : Pointer to Desired-Output-Buffer

Err : Pointer to Error value

U : Step size

Output DLY : Updated circular pointer with index 
set to the oldest value of the filter 
Delay-Buffer

H(nH) : Modified Coeff-Buffer

R(nX) : Output-Buffer

Return None
User’s Manual 4-235 V 1.2, 2000-01



 Function Descriptions
Description Delayed LMS algorithm implemented for mixed adaptive FIR 
filter, FIR filter transversal structure (direct form), Block 
processing, 16-bit fractional input, 32-bit coefficients and 
output data format, Optimal implementation, requires filter 
order to be multiple of two. 

DlmsBlk_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Block Processing (cont’d)
User’s Manual 4-236 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac32 acc;       //filter result
   frac16 circ *aDLY = &DLY;
                     //ptr to Circ-ptr of Delay-Buffer
   int i, j;
   //loop for input buffer
   for (i=0; i<nX; i++)
   {
      //Error value multiplied by step size
      uerr = (frac32 rnd)(*Err * U);
      //store input value in Delay-Buffer at the position 
      //of the oldest value
      *DLY = *X++;
      acc = 0;
      k = 0;
      //tap loop
      for (j=0; j<nH/4; j++)
      {
         acc = acc + (frac32 sat)(*(H+k) * (*(DLY + k))); 
                     //acc = acc + X(n)* H_n-1(0) 
         acc = acc + (frac32 sat)(*(H+k+1) * (*(DLY+k+1)));
                     //acc = X(n-1) * (H_n-1(1)

         //coefficient update
         *(H+k) = (frac32 sat)((*(H+k)) + uerr * (*(DLY+k)));
         *(H+k+1) = (frac32 sat)((*(H+k+1)) + uerr * (*(DLY+k+1)));
         k = k + 2;
       }
       //Set DLY.index to the oldest value in Delay-Buffer 
       DLY--;
       aDLY = *DLY;
       //filter output stored to output buffer
       *R = acc;
       //calculate error for the current output
       *Err = *D++ - *R++;
   }
}       

DlmsBlk_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Block Processing (cont’d)
User’s Manual 4-237 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop unrolling, two taps/loop  
• Use of packed data Load/Store
• Delay line and coefficient array implemented as circular-

buffer 
• Instruction ordering for zero overhead Load/Store

Assumptions • Filter size is a multiple of two
• Inputs in 1Q15, all other parameters in 1Q31 format

Memory Note

Figure 4-59 DlmsBlk_2_16x32

DlmsBlk_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Block Processing (cont’d)

Input-Buffer Delay-Buffer

aX

aDLYcaDLY
.

X(n-nH+1)

X(n)

X(n-1)

X(n-2)

.

.

.

1Q15

doubleword
aligned

Hn-1(1)

.

.

.

.

.

Hn-1(0)

Hn-1(nH-1)

1Q31

doubleword
aligned

 MAC

X(1)

.

.

.

X(n)

.

X(0)

.

aH

Coeff-Buffer

halfword
aligned

1Q15

caH
User’s Manual 4-238 V 1.2, 2000-01



 Function Descriptions
Figure 4-60 DlmsBlk_2_16x32 Coefficient update

DlmsBlk_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Block Processing (cont’d)

Delay-Buffer

aDLYcaDLY
.

x(n-nH+1)

x(n)

x(n-1)

x(n-2)

.

.

.

1Q15

doubleword
aligned

Desired
Output Buffer

1Q31

aD

D(1)

.

.

.

.

D(n)

D(0)

.

Output-Buffer

1Q31

aR

R(1)

.

.

.

.

R(n)

R(0)

.

Error Value

MAC

Coefficient
Update

Hn(1)

.

.

.

.

.

Hn(0)

Hn(nH-1)

1Q31

doubleword
aligned

Updated
Coefficient

Errn = D(n) - R(n)

Errn-1

aH
User’s Manual 4-239 V 1.2, 2000-01



 Function Descriptions
Implementation This DLMS routine processes a block of input values at a time. 
The pointer to the input buffer is sent as an argument to the 
function. The output is stored in output buffer, the starting 
address of which is also sent as an argument to the function. 

Implementation details are same as Dlms_4_16, except that 
the Coeff-Buffer is also circular and needs doubleword 
alignment. The advantage of using circular buffer for 
coefficients is efficient pointer update. In this implementation 
while exiting the tap loop, the first two coefficients are already 
loaded for the next input value. This helps in saving one cycle 
in the next sample processing.

Example Trilib\Example\Tasking\Filters\Adaptive
\expDlmsBlk_2_16x32.c, expDlmsBlk_2_16x32.cpp
Trilib\Example\GreenHills\Filters\Adaptive
\expDlmsBlk_2_16x32.cpp, expDlmsBlk_2_16x32.c
Trilib\Example\GNU\Filters\Adaptive
\expDlmsBlk_2_16x32.c

Cycle Count With DSP 
Extensions

Pre-loop : 7

Loop (for input data) :  

Post-loop : 1+2

Without DSP 
Extensions

Pre-loop : 8

Loop : same as With DSP Extensions

Post-loop : 1+2

Code Size 136 bytes

DlmsBlk_2_16x32 Mixed Adaptive FIR Filter, Coefficients - multiple of 
two, Block Processing (cont’d)

nX 9
nH
2

------- 1– 
  4 6+×+×

+1+2
User’s Manual 4-240 V 1.2, 2000-01



 Function Descriptions
4.7 Fast Fourier Transforms

Spectrum (Spectral) analysis is a very important methodology in Digital Signal
Processing. Many applications have a requirement of spectrum analysis. The spectrum
analysis is a process of determining the correct frequency domain representation of the
sequence. The analysis gives rise to the frequency content of the sampled waveform
such as bandwidth and centre frequency.

One of the method of doing the spectrum analysis in Digital Signal Processing is by
employing the Discrete Fourier Transform (DFT).

The DFT is used to analyze, manipulate and synthesize signals in ways not possible with
continuous (analog) signal processing. It is a mathematical procedure that helps in
determining the harmonic, frequency content of a discrete signal sequence. DFTs origin
is from a continuous fourier transform which is given by 

[4.77]

where x(t) is continuous time varying signal and X(f) is the fourier transform of the same.

The DFT is given by

[exponential form] [4.78]

where the DFT coefficients used in the DFT Kernel, W, is

                        [4.79]

[4.80]

X(k) is the kth DFT output component for k=0,1,2,....,N-1

x(n) is the sequence of discrete sample for n=0,1,2,...,N-1

j is imaginary unit 

N is the number of samples of the input sequence (and number of frequency points of
DFT output). 

X f( ) x t( )e j2πft–
td

∞–

∞

∫=

X k( ) x n( )WN
nk

n 0=

N 1–

∑=

WN e
j2π– N⁄

=

X k( ) x n( ) 2πnk N⁄ )(cos j 2πnk N⁄( )sin–[ ]

n 0=

N 1–

∑=

1–
User’s Manual 4-241 V 1.2, 2000-01



 Function Descriptions
While the DFT is used to convert the signal from time domain to frequency domain. The
complementary function for DFT is the IDFT, which is used to convert a signal from
frequency to time domain. The IDFT is given by

[exponential form] [4.81]

[4.82]

Notice the difference between DFT in Equation [4.78] and Equation [4.80], the IDFT
Kernel is the complex conjugate of the DFT and the output is scaled by N.

WN
nk, the Kernel of the DFT and IDFT is called the Twiddle-Factor and is given by,

In exponential form,

                                for DFT

                                for IDFT

In rectangular form,

                               for DFT

                               for IDFT

While calculating DFT, a complex summation of N complex multiplications is required for
each of N output samples. N2 complex multiplications and N(N-1) complex additions
compute an N-point DFT. The processing time required by large number of calculation
limits the usefulness of DFT. This drawback of DFT is overcome by a more efficient and
fast algorithm called Fast Fourier Transform (FFT). The radix-2 FFT computes the DFT
in N*log2(N) complex operations instead of N2 complex operations for that of the DFT.
(where N is the transform length.)

The FFT has the following preconditions to operate at a faster rate.

• The radix-2 FFT works only on the sequences with lengths that are power of two.
• The FFT has a certain amount of overhead that is unavoidable, called bit reversed

ordering. The output is scrambled for the ordered input or the input has to be arranged
in a predefined order to get output properly arranged. This makes the straight DFT
better suited for short length computation than FFT. The graph shows the algorithm
complexity of both on a typical processor like pentium.

x n( ) 1
N
---- X k( )ej2πnk N⁄

k 0=

N 1–

∑=

x n( ) 1
N
---- X k( ) 2πnk N⁄( )cos j 2πnk N⁄( )sin+[ ]

k 0=

N 1–

∑=

e
j– 2πnk N⁄

e
j2πnk N⁄

2πnk N⁄( )cos j 2πnk N⁄( )sin–

2πnk N⁄( )cos j 2πnk N⁄( )sin+
User’s Manual 4-242 V 1.2, 2000-01



 Function Descriptions
Figure 4-61 Complexity Graph

The Fourier transform plays an important role in a variety of signal processing
applications. Anytime, if it is more comfortable to work with a signal in the frequency
domain than in the original time or space domain, we need to compute Fourier transform.

Given N input samples of a signal x(n) = 0,1,..., (N-1), its Fourier transform is defined by

[4.83]

Since n is an integer, X(f) is periodic with the period 1. Therefore, we only consider X(f)
in the basic interval . In digital computation, X(f) is often evaluated at N uniformly
spaced points f = k/N (k=0,1,.....,N-1). This leads to the Discrete Fourier Transform (DFT)

 (k=0,1,.....,N-1) [4.84]

with . Direct computation of this length N, DFT takes N2 complex
multiplications and N(N-1) complex additions. FFT is an incredibly efficient algorithm for
computing DFT. The main idea of FFT is to exploit the periodic and symmetric properties

0.1

0.01

0.001

correlation DFT

FFT

1

10

100

1000

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

8 16 32 64 128 256 512 1024 40962048
Number points in DFT

X f( ) x n( )e j2πfn–

n 0=

N 1–

∑=

0 f 1≤ ≤

X k( ) x n( )WN
nk

n 0=

N 1–

∑=

WN e
j2π– N⁄

=

User’s Manual 4-243 V 1.2, 2000-01



 Function Descriptions
of the DFT Kernel . The resulting algorithm depends strongly on the transform
length N. The basic Cooley-Tukey algorithm assumes that N is a power of two. Hence it
is called radix-2 algorithm. Depending on how the input samples x(n) and the output data
X(k) are grouped, either a decimation-in-time (DIT) or a decimation-in-frequency (DIF)
algorithm is obtained. The technique used by Cooley and Tukey can also be applied to
DFTs, where N is a power of r. The resulting algorithms are referred to as radix-r FFT. It
turns out that radix-4, radix-8, and radix-16 are especially interesting. In cases where N
cannot be represented in terms of powers of single number, mixed-radix algorithms must
be used. For example for 28 point input, since 28 cannot be represented in terms of
powers of 2 and 4 we use radix-7 and radix-4 FFT to get the frequency spectrum. The
basic radix-2 decimation-in-frequency FFT algorithm is implemented.

4.7.1 Radix-2 Decimation-In-Time FFT Algorithm

The decimation-in-time (DIT) FFT divides the input (time) sequence into two groups, one
of even samples and the other of odd samples. N/2-point DFTs are performed on these
sub-sequences and their outputs are combined to form the N-point DFT.

First, x(n) the input sequence in the Equation [4.84] is divided into even and odd sub-
sequences.

 for k=0 to N-1 [4.85]

But, 

By substituting the following in Equation [4.85] 

x1(n)=x(2n)

x2(n)=x(2n+1)

Equation [4.85] becomes

 for k=0 to N-1 [4.86]

WN
nk

X k( ) x 2n( )WN
2nk

x 2n 1+( )WN
2n 1+( )k

n 0=

2
---- 1–

∑+

n 0=

2
---- 1–

∑=

x 2n( )WN
2nk

WN
k

x 2n 1+( )WN
2nk

n 0

N
2
---- 1–

∑+

n 0

N
2
---- 1–

∑=

WN
2nk

e
j2π–( ) N⁄( )

2nk
e

j2π–( ) N 2⁄( )⁄( )
nk

WN 2⁄
nk

===

X k( ) x1 n( )WN 2⁄
nk

WN
k

x2 n( )WN 2⁄
nk

n 0=

N 2 1–⁄

∑+

n 0=

N 2 1–⁄

∑=

Y k( ) WN
k

+ Z k( )=
User’s Manual 4-244 V 1.2, 2000-01



 Function Descriptions
Equation [4.86] is the radix-2 DIT FFT equation. It consists of two N/2-point DFTs (Y(k)
and Z(k)) performed on the subsequences of even and odd samples respectively of the
input sequence, x(n). Multiples of WN, the Twiddle-Factors are the coefficients in the FFT
calculation.

Further,

[4.87]

Equation [4.86] can be expressed in two equations

[4.88]

[4.89]

for k=0 to N/2-1

The complete 8-point DIT FFT is illustrated in figure.

Figure 4-62 8-point DIT FFT

WN
k N 2⁄+

e
j– 2π N⁄( )

k
e

j– 2π N⁄( )
N 2⁄

× WN
k

–= =

X k( ) Y k( ) WN
k
Z k( )+=

X k N 2⁄+( ) Y k( ) WN
k
Z k( )–=

W2

x0

W0

x3

x5

x7

x1

x2

x6

x4 X1

X2

X3

X4

X6

X5

X7

X0

W0

W3

W2

W1

W2

W0

W0

W0

W0

W0

+

-

+

-

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-

+

+

+

+

User’s Manual 4-245 V 1.2, 2000-01



 Function Descriptions
The complete 8-point DIF FFT is illustrated in figure.

Figure 4-63 8-point DIF FFT

In the diagram, each pair of arrows represents a Butterfly. The whole of FFT is computed
by different patterns of Butterflies. These are called groups and stages.

For 8-point FFT the first stage consists of four groups of one Butterfly each, second
consists of two groups of two butterflies and third stage has one group of four Butterflies.
Each Butterfly is represented as in diagram.

Figure 4-64 Radix-2 DIT Butterfly

W0

x3

x5

x7

x1

x2

x6

x0

x4 X1

X2

X3

X4

X6

X5

X7

X0

W2

W0

W2

W0

W2

W1

W3

+

-

-

+

+

+

+

+

+

+

-

-

-

-

-

-

+

+

+

+

-

-

-

-

Dual node
spacing

x0’+jy0’

x1’+jy1’

x0+jy0

x1+jy1
W=C+j(-S)

Primary
node

Dual
node
User’s Manual 4-246 V 1.2, 2000-01



 Function Descriptions
The output is derived as follows

[4.90]

[4.91]

[4.92]

[4.93]

x0’ x0 C( )x1 S–( )y1–[ ]+=

y0’ y0 C( )y1 S–( )x1+[ ]+=

x1’ x0 C( )x1 S–( )y1–[ ]–=

y1’ y0 C( )y1 S–( )x1+[ ]–=
User’s Manual 4-247 V 1.2, 2000-01



 Function Descriptions
4.8 TriCore Implementation Note

4.8.1 Organization of FFT functions

The FFT radix-2 DIT function set consists of the following functions.

• Forward FFT
• Inverse FFT
• Forward Real FFT
• Inverse Real FFT

The above set of functions makes use of macros for efficient computation. The basic bit
reversal module, Butterflies and the Spectrum split operations are implemented in form
of macros.

The TriLib FFT implementation is one of the most optimal implementation which makes
use of several optimization techniques. Further, it makes use of different optimization
methods at instruction level. Secondly, it is organized as macros to save time during
function calls and also overcome the conditional checks such as shift etc., which perhaps
is done during assembling time itself as it is implemented as macros. Thirdly, the
algorithmic optimization, where the first pass or the first stage Butterflies are computed
outside the loop separately. This saves time as the first stage Butterflies need not be
multiplied by Twiddle-Factors. 

4.8.2 16 Bit Implementation Modules

The classical FFT takes the input and Twiddle-Factor in the form of 16 bit complex
number representation as in Figure 4-2. For computational efficiency and to make use
of the parallel architecture of TriCore, a more efficient form of complex representation is
devised for internal operations of the FFT. The REAL:IMAG, REAL:IMAG pairs are
converted to REAL:REAL, IMAG:IMAG representation before processing.

Twiddle-Factors for the computation of 16 bit FFT is done by a utility function called
FFT_TF_16().

The main modules of FFTs are:

FFT_2_16() Forward FFT for 16 bit Complex input, radix-2 decimation-in-
time implementation

IFFT_2_16() Inverse FFT for 16 bit Complex input, radix-2 decimation-in-
time implementation
User’s Manual 4-248 V 1.2, 2000-01



 Function Descriptions
4.8.3 16 bit Implementation for Mixed FFT

The mixed 16 bit FFT is the combination of features of 32 bit and 16 bit FFT, while 16 bit
is more efficient and 32 bit is more precise. The mixed FFT is a combination of both. It
has better precision than 16 bit and better speed than 32 bit implementation.

Internally the mixed FFT uses 32 bit representation and the final stage output is
converted to 16 bit precision using ConvertBuf macro.

Twiddle-Factors for the computation of mixed FFT is done by a utility function called
FFT_TF_16x32().

The main modules of Mixed FFTs are:

4.8.4 32 Bit Implementation 

The 32 bit implementation follows the straight forward approach in implementation. The
first pass (stage) is done outside the stage loop for the optimization purpose like it is
done in the 16 bit implementation. This is done by the Firstpass macro.

FFTReal_2_16() Forward FFT for 16 bit Real sequence input, radix-2 
decimation-in-time implementation

IFFTReal_2_16() Inverse Real FFT for 16 bit Complex sequence input, radix-2 
decimation-in-time implementation to generate the two real 
output sequences

FFT_2_16x32() Forward FFT for 16 bit Complex input, radix-2 decimation-in-
time implementation. Internal processing will be 32 bits, 
output will be rounded to 16 bits

IFFT_2_16x32() Inverse FFT for 16 bit Complex input, radix-2 decimation-in-
time implementation. Internal processing will be 32 bits, 
output will be rounded to 16 bits

FFTReal_2_16x32() Forward FFT for 16 bit Real sequence input, radix-2 
decimation-in-time implementation. Internal processing will be 
32 bits, output will be rounded to 16 bits

IFFTReal_2_16x32() Inverse Real FFT for 16 bit Complex sequence input, radix-2 
decimation-in-time implementation to generate the two real 
output sequences. Internal processing will be 32 bits, output 
will be rounded to 16 bits
User’s Manual 4-249 V 1.2, 2000-01



 Function Descriptions
Subsequent passes (stages) uses the Butterfly2 macro for the forward FFT and the
IButterfly2 macro for the inverse FFT. This is same as the 16 bit implementation, except
that this doesn’t need the special arrangement of the data.

Twiddle-Factors for FFT and IFFT are complex conjugate of each other, the Twiddle-
Factors calculated for FFT are used for IFFT. The Butterfly calculation for IFFT is
changed accordingly.

The Real FFT uses the Complex FFT functionality for computation and the final output
is split to separate the real part from the complex result and is arranged as a real half in
and imaginary half like Re[0], Re[1],...,Re[N/2-1], Im[0], Im[1],...,Im[N/2-1] in a
continuous order.

Twiddle-Factors for the computation of FFT is done by a utility function called
FFT_TF_32() as shown in the example. 

The input for the 32 bit FFT, IFFT, RFFT, RIFFT are all in 1Q31 packed into a 64 bit data
as shown in the Figure 4-3 the input and the output is in normal order.

The main modules of FFTs are:

4.8.5 Functional Implementation

The main functions tested in Section 4.8.2 has a generic structure. It uses three nested
loops. It computes the first pass outside the nested loops.

First Stage 

The First stage is executed outside the nested loops. The advantage of having this has
been already discussed in the Section 4.8.1. The First stage makes use of the

FFT_2_32() Forward FFT for 32 bit Complex input, radix-2 decimation-in-
time implementation

IFFT_2_32() Inverse FFT for 32 bit Complex input, radix-2 decimation-in-
time implementation

FFTReal_2_32() Forward FFT for 32 bit Real sequence input, radix-2 
decimation-in-time implementation

IFFTReal_2_32() Inverse Real FFT for 32 bit Complex sequence input, radix-2 
decimation-in-time implementation to generate the two real 
output sequences
User’s Manual 4-250 V 1.2, 2000-01



 Function Descriptions
FirstPass macro. The idea to separate the first stage Butterfly outside the loop can be
depicted as follows

[4.94]

[4.95]

[4.96]

[4.97]

In the first stage, there are N/2 groups, each containing a single Butterfly. Each Butterfly
uses a Twiddle-Factor W0, where

[4.98]

All of the multiplications in the first stage are by a value of either 0 or 1 and therefore can
be removed. The first stage Butterflies do not need multiplications. The Butterfly
equations reduce to the following.

[4.99]

[4.100]

[4.101]

[4.102]

Because there is only one Butterfly per group in the first stage, the Butterfly loop (which
would execute only once per group) and the group loop can be combined.

The FirstPass macro does the following operations.

• It copies the Input-Buffer elements in the bit reversal order to output array which is
used for in-place processing.

• It calculates the first Butterfly.
• It converts the conventional complex notation REAL:IMAG, REAL:IMAG format to

REAL:REAL, IMAG:IMAG format for efficient computation.

The following sections describe each of the loops.

Butterfly Loop

The inner most loop is the Butterfly loop in the FFT.

x0’ x0 C( )x1 S–( )y1–[ ]+=

y0’ y0 C( )y1 S–( )x1+[ ]+=

x1’ x0 C( )x1 S–( )y1–[ ]–=

y1’ y0 C( )y1 S–( )x1+[ ]–=

W
0

e
j0

0( )cos j 0( ) 1 j0+=sin+= =

x0’ x0 x1+=

y0’ y0 y1+=

x1’ x0 x1–=

y1’ y0 y1–=
User’s Manual 4-251 V 1.2, 2000-01



 Function Descriptions
The Butterfly macro is used to perform the basic Butterfly operation with or without
shifting. The Butterfly operation is as given below.

The Butterfly macro exploits the parallel architecture of the TriCore to achieve two
parallel operations in one single operation. Therefore it can compute two Butterfly
outputs in parallel.

[4.103]

[4.104]

[4.105]

[4.106]

The Butterfly macro involves two packed multiplications and two packed additional
subtraction. The MAC operation can cause the output of Butterfly to grow by two bits
from input to output. So the Butterfly also has a version with shift to take care of the
conditions to avoid errors caused by bits growth.

The Inverse Butterfly (IButterfly) macro is used by the Inverse FFT functions to
compute the Butterfly operation. In classical method the Twiddle-Factor is the complex
conjugate of the forward FFT. For efficient computation, the Twiddle-Factor is computed
by the same method as that of the forward FFT. But the computational mechanism is
changed in case of Inverse Butterfly, so as to achieve the same output as that by using
the complex conjugate. In contrast to the Forward Butterfly, inverse will compute using
the following equations.

[4.107]

[4.108]

[4.109]

[4.110]

An example of bit growth and overflow is shown below.

Bit Growth: 

Input to the Butterfly 
H#0C00

= 0000 1100 0000 0000

x0’ x0 C( )x1 S–( )y1–[ ]+=

y0’ y0 C( )y1 S–( )x1+[ ]+=

x1’ x0 C( )x1 S–( )y1–[ ]–=

y1’ y0 C( )y1 S–( )x1+[ ]–=

x0’ x0 C( )x1 S–( )y1+[ ]+=

y0’ y0 C( )y1 S–( )– x1[ ]+=

x1’ x0 C( )x1 S–( )y1+[ ]–=

y1’ y0 C( )y1 S–( )– x1[ ]–=
User’s Manual 4-252 V 1.2, 2000-01



 Function Descriptions
Overflow:

In overflow, the positive number H#3000 is multiplied by a positive number, resulting in
H#C000, which is too large to represent as a positive, signed 16 bit number. H#C000 is
erroneously interpreted as a negative number.

To avoid overflow errors there are methods for compensating the growth of bits.

Following are the standard methods of compensation for the bit growth error.

a) Scaling of Input data to the Butterfly
b) Scaling of the output data unconditionally using the block floating point fundamental

method
c) Scaling of the output data conditionally using the block floating point fundamental

method
d) Extra sign bits to protect the output data

The method depicted in (d) is the fastest and the most efficient method but unfortunately
this has limited accuracy and is not suited for large FFTs.

Method (a) Input data scaling requires the extra shifting or scaling for all the input before
passing to FFT for processing, this becomes overhead in using the FFT and the purpose
is not served since it involves extra processing and also programming effort.

Method (b) is another way of compensating the bit growth, it unconditionally scales down
the input to Butterfly by a factor of two so that the output never overflows. This adds extra
time as the overhead and also the precision is lost in every iteration. The method
adapted here is to shift the whole block of data one bit to the right and updating the block
exponent.

Output from Butterfly 
H#1800

= 0001 1000 0000 0000

Input to the Butterfly 
H#3000

= 0011 0000 0000 0000

Output from Butterfly 
H#C000

= 1100 0000 0000 0000
User’s Manual 4-253 V 1.2, 2000-01



 Function Descriptions
Method adapted in the TriLib FFT implementation

The most optimal method (c), the conditional block floating point scales the input data
only if the bit growth occurs. This shifting is done for the entire block with the updating of
the block exponent if one or more output grows. The condition is checked before every
stage of the loop begins and then it is branched to execute the nested loops with or
without pre-shift depending upon the status of the Sticky Advance Overflow (SAV) flag
of the Program Status Word (PSW).

Group Loop

The main objective of the group loop is to control the group of Butterfly. It sets the
address pointers for each of the Butterflies for their respective Twiddle-Factor-Buffers
and the input data buffers.

Stage Loop 

The Stage Loop is the outer most loop of the FFTs nested loop. It controls the group
count, the number of Butterflies for each of the group and most importantly it performs
the conditional block floating point scaling on the stage calculation before it enters the
Group Loop. 

Post Processing

The Post processing is involved in case of 16 bits, Mixed 16 bits and all the Real FFT
implementations.

In case of 16 bit implementation, ToComplexSfm is used to convert the REAL:REAL,
IMAG:IMAG internal representation to REAL:IMAG format.

In case of mixed 16 bit implementation, the output buffer after the FFT has 32 bit
precision it uses the ConvertBuf macro to make it 16 bit.

In Real Forward FFT implementation of all the types, the Split macro is used to separate
the output of the two real sequences given as the input to the Real FFT.

4.8.6 Implementation of FFT to Process the Real Sequences of Data

Many applications have the real valued data to be processed. Though the data is real
valued, one trivial approach is to use the Complex FFT by making the real portion of the
complex sequence filled by the real values and the imaginary portion equated to zero.
User’s Manual 4-254 V 1.2, 2000-01



 Function Descriptions
However, this method is very inefficient. Following steps are followed to efficiently
implement the Real FFT using the Complex FFT algorithm.

1. Input complex sequence x(n) has to be formed from the two N length real valued
sequences x1(n), x2(n).

For n = 0, 1,..., N-1

x(n).real = x1(n) [4.111]

x(n).imag = x2(n) [4.112]

2. Compute the N-length Complex FFT on x(n).

[4.113]

3. Perform the Split of the output spectrum. The Splitting of the spectrum is done by
Split macro that implements the following equations.

                           [4.114]

                         [4.115]

            [4.116]

            [4.117]

For k = 1,..., N/2-1

     [4.118]

     [4.119]

                           [4.120]

                           [4.121]

Implementation of the Inverse Real FFT is done by forming the single complex sequence
X(k) from two sequences X1(k) and X2(k). The Unify macro is used to perform this
operation. The following equations are implemented in the Unify macro.

X k( ) FFT x n( )[ ]=

X1r 0( ) Xr 0( )= X1i 0( ) 0=

X2r 0( ) Xi 0( )= X2i 0( ) 0=

X1r N 2⁄( ) Xr N 2⁄( )= X1i N 2⁄( ) 0=

X2r N 2⁄( ) Xi N 2⁄( )= X2i N 2⁄( ) 0=

X1r k( ) 0.5 Xr k( ) Xr N k–( )+[ ]×= X1i k( ) 0.5 Xi k( ) Xi N k–( )+[ ]×=

X2r k( ) 0.5 Xi k( ) Xi N k–( )+[ ]×= X2i k( ) 0.5– Xr k( ) Xr N k–( )+[ ]×=

X1r N k–( ) X1r k( )= X1i N k–( ) X– 1i k( )=

X2r N k–( ) X2r k( )= X2i N k–( ) X– 2i k( )=
User’s Manual 4-255 V 1.2, 2000-01



 Function Descriptions
For k = 0,...,N-1

[4.122]

[4.123]

The unified complex sequence X(k) is used as the single sequence as input to the
Inverse FFT.

[4.124]

4.8.7 Design of Test Cases for the FFT functions

The test cases are designed using the math lab references. The characteristics of the
FFT is used to simplify the design of test cases. The Complex FFT contains the real and
imaginary components in the input data. By careful examination of the FFT equation it
can be found that when the real component is a cosine term with or without the
harmonics and the imaginary component is the sine term with same frequency and
harmonics as that of the cosine term, the output of the FFT will have a peak in second
position of the output array 

Say, the input is given by the following equation

[4.125]

where k=0,....,

Xr k( ) X1r k( ) X2i k( )+=

Xi k( ) X1i k( ) X2r k( )+=

x n( ) IDFT X k( )[ ]=

2πnk( )cos i 2πnk( )sin+

n 0=

N

∑

∞

User’s Manual 4-256 V 1.2, 2000-01



 Function Descriptions
The corresponding output will have only one peak as shown in the graphics below.

Figure 4-65 The plot of Equation [4.125] for a typical value of k given as input

Figure 4-66 The output plot from the FFT contains only one peak
User’s Manual 4-257 V 1.2, 2000-01



 Function Descriptions
Figure 4-67 The Real cosine component for the Real FFT input

Figure 4-68 The output of the FFT contains two peaks for the input Figure 4-67 

The presence of only cosine component and the sine component if equated to zero, the
output should have two peaks in second and Nth position in the real part of the output
array. This is the test used for the real FFT 

The DC test is optional which gives rise to one peak in the first position of the output
array.This can be used to verify the scaling factor of the FFT.
User’s Manual 4-258 V 1.2, 2000-01



 Function Descriptions
4.8.8 Using FFT functions

TriLib has three versions of FFT implementation 16 bit precision, 32 bit precision and 16
bit mixed precision.

16 bit implementation is most efficient.

32 bit implementation is most accurate.

16 bit mixed implementation is a compromise between speed of 16 bit and accuracy of
32 bit. It should be noted that mixed FFT is not efficient at all for FFTs at low points say,
8, 16.

FFTs are demonstrated by respective example main files such as

expCplx FFT_2_16() - demonstrates 16 bit FFT

expCplx FFT_2_32() - demonstrates 32 bit FFT

expCplx FFT_2_16X32() - demonstrates 16 bit mixed FFT and so the Real too.

The test data can be included into the above main functions such as 

FFT_X.h - where X is points of FFT. e.g.,

FFT_8.h - 8 point Complex 16 bit data

FFT_16_32.h - 16 point Complex 32 bit data

RFFT_16.h - 16 point Real 16 bit data and so on.

Important Note:

• The 16 bit, 32 bit Real FFT and 16 bit Real, Complex FFT requires an output buffer to
be 2N size

• The Real FFT functions of 16, 32 and 16 mixed versions modifies the contents of input
buffer

4.8.9 Description

The following FFT functions for 16 bit, 32 bit and mixed are described.

• Complex Forward Radix-2 DIT FFT
• Complex Inverse Radix-2 DIT FFT
• Real Forward Radix-2 DIT FFT
• Real Inverse Radix-2 DIT FFT
User’s Manual 4-259 V 1.2, 2000-01



 Function Descriptions
Important Note on Cycle Count:

The actual cycle count depends upon the dynamic path followed while execution which
depends on the input given. The actual cycle count should lie within the range given by
higher and lower limit of cycle count.

I

User’s Manual 4-260 V 1.2, 2000-01



 Function Descriptions
FFT_2_16 Complex Forward Radix-2 DIT FFT for 16 bits

Signature short FFT_2_16(CplxS       *R,    

                         CplxS       *X,

                         CplxS       *TF,

                         int             nX

                         );

Inputs X

TF

nX

:

:

:

Pointer to Input-Buffer of 16 bit 
complex value
Pointer to Twiddle- Factor-Buffer of 
16 bit complex value in predefined 
format
Size of Input-Buffer (power of 2)

Output R : Pointer to Output-Buffer of 16 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Complex Forward Radix-2 
decimation-in-time Fast fourier transform on the given input 
complex array. The detailed implementation is given in the 
Section 4.8.
User’s Manual 4-261 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * y->real + k->real * y->imag);
            y’->real = x->real - (k->real * y->real - k->imag * y->imag);
            y’->imag = x->imag - (k->real * y->imag + k->imag * y->real);
         }
         initialize k pointer
         initialize x,y pointer  
      }
      I = I/2;
      J = J*2;
   }
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q15 format
• Input and Output has real and imaginary part packed as 16

bit data to form 32 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order

FFT_2_16 Complex Forward Radix-2 DIT FFT for 16 bits (cont’d)
User’s Manual 4-262 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-69 FFT_2_16

Implementation Refer Section 4.8.2

FFT_2_16 Complex Forward Radix-2 DIT FFT for 16 bits (cont’d)

32 bit

Hi
Memory

32 bit

x(1)

x(2)

x(3)

x(4)

.

.

x(0)

x(N-1)

Bit
reversed
data fetch

aX
Input-Buffer

FFT

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary parts

Real and
Imaginary parts in

1Q15

The data is arranged as in
Figure 4-2

Twiddle-Factor

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Output-Spectrum

aR

32 bit

R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1) Hi
Memory

(16 bit Cplx)

(16 bit Cplx)

(16 bit Cplx)
User’s Manual 4-263 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Transforms\FFT\expCplxFFT_2_16
.c, expCplxFFT_2_16.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expCplxFFT_2_16.cpp, expCplxFFT_2_16.c
Trilib\Example\GNU\Transforms\FFT\expCplxFFT_2_16.c

Cycle Count Initialization : 7

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing :

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                  167              172                              164

256              8350            8350                             7453

Code Size 344 bytes

FFT_2_16 Complex Forward Radix-2 DIT FFT for 16 bits (cont’d)

7 7 N 2⁄× 2+ +

10 Log2N 1–( )× 2+

+8 N 2⁄ 1–( )× 2+

+ 13or11( ) Log2N 1–( ) N 4⁄× 2+

10 Log2N 1–( )× 2+

8 N 2⁄ 1–( )× 2+

13or11( ) Log2N 1–( ) N 4⁄× 2+

6 4 N 2⁄× 4+ +
User’s Manual 4-264 V 1.2, 2000-01



 Function Descriptions
IFFT_2_16 Complex Inverse Radix-2 DIT IFFT for 16 bits

Signature short IFFT_2_16(CplxS      *R,    

                         CplxS       *X,

                         CplxS       *TF,

                         int             nX

                         );

Inputs X

TF

nX

:

:

:

Pointer to Input-Buffer of 16 bit 
complex value 
Pointer to Twiddle- Factor-Buffer of 
16 bit complex number value in 
predefined format
Size of Input-Buffer (power of 2)

Output R : Pointer to Output-Buffer of 16 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Complex Inverse Radix-2 
decimation-in-time Fast fourier transform on the given input 
complex array. The detailed implementation is given in the 
Section 4.8.
User’s Manual 4-265 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * y->real - k->imag * y->real);
            y’->real = x->real - (k->real * y->real - y->imag * k->imag);
            y’->imag = x->imag - (k->real * y->imag - y->real * k->imag);
         }
         initialize k pointer
         initialize x,y pointer  
      }
      I = I/2;
      J = J*2; 
   }
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q15 format
• Input and Output has real and imaginary part packed as 16

bit data to form 32 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order

IFFT_2_16 Complex Inverse Radix-2 DIT IFFT for 16 bits (cont’d)
User’s Manual 4-266 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-70 IFFT_2_16

Implementation Refer Section 4.8.2

IFFT_2_16 Complex Inverse Radix-2 DIT IFFT for 16 bits (cont’d)

32 bit

Hi
Memory

32 bit

X(1)

X(2)

X(3)

X(4)

.

.

X(0)

X(N-1)

Bit
reversed
data fetch

aX
Input-Buffer

IFFT

Real and
Imaginary parts in

1Q15

The data is arranged as in
Figure 4-2

Twiddle-Factor

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Output-Spectrum

aR

32 bit

R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1) Hi
Memory

(16 bit Cplx)

(16 bit Cplx) (16 bit Cplx)

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary parts
User’s Manual 4-267 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Transforms\FFT
\expCplxFFT_2_16.c, expCplxFFT_2_16.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expCplxFFT_2_16.cpp, expCplxFFT_2_16.c
Trilib\Example\GNU\Transforms\FFT\expCplxFFT_2_16.c

Cycle Count Initialization : 7

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing :

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                  162              172                              164

256              7581            8350                             7453

Code Size 345 bytes

IFFT_2_16 Complex Inverse Radix-2 DIT IFFT for 16 bits (cont’d)

7 7 N 2⁄× 2+ +

10 Log2N 1–( )× 2+

+8 N 2⁄ 1–( )× 2+

+ 13or11( ) Log2N 1–( ) N 4⁄× 2+

10 Log2N 1–( )× 2+

8 N 2⁄ 1–( )× 2+

13or11( ) Log2N 1–( ) N 4⁄× 2+

6 4 N 2⁄× 4+ +
User’s Manual 4-268 V 1.2, 2000-01



 Function Descriptions
FFTReal_2_16 Real Forward Radix-2 DIT FFT for 16 bits

Signature short FFTReal_2_16(CplxS      *R,    

                           CplxS      *X,

                         CplxS      *TF,

                         int            nX

                         );

Inputs X

TF

nX

:

:

:

Pointer to Input-Buffer of 16 bit 
complex value
Pointer to Twiddle- Factor-Buffer of 
16 bit complex value in predefined 
format
Size of Input-Buffer (power of 2)

Output R : Pointer to Output-Buffer of 16 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Real Forward Radix-2 decimation-
in-time Fast Fourier Transform on the given input complex 
array. The detailed implementation is given in the Section 4.8. 
The Real FFT is implemented by using the complex FFT and 
the output spectrum is split to separate the Real FFT results. 
User’s Manual 4-269 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * y->real + k->imag * y->real);
            y’->real = x->real - (k->real * y->real - y->imag * k->imag);
            y’->imag = x->imag - (k->real * y->imag + y->real * k->imag);
         }
         initialize k pointer
         initialize x,y pointer  
      }
      I = I/2;
      J = J*2;
   }
   Split Spectrum     // separate the real from the complex output
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q15 format
• Input and Output has real and imaginary part packed as 16

bit data to form 32 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order 
• Input contains two real sequences, x1 and x2, each of

length N. x1 is in real part and x2 is in imaginary part of
input complex data

• The output spectra has two complex blocks, each of length
N, wherein the first block is for x1 and subsequent block for
x2

FFTReal_2_16 Real Forward Radix-2 DIT FFT for 16 bits (cont’d)
User’s Manual 4-270 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-71 FFTReal_2_16

FFTReal_2_16 Real Forward Radix-2 DIT FFT for 16 bits (cont’d)

32 bit*

x(1)

x(2)

x(3)

x(4)

.

.

x(0)

x(N-1)

Bit
reversed
data fetch

aX
Input-Buffer

RFFT

Real and
Imaginary parts in

1Q15

The data is arranged as in
Figure 4-2

Hi
Memory

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary parts

Twiddle-Factor

32 bit*

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Output-Spectrum
aR

32 bit*

R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1)
Split

Spectrum

Real and
Imaginary parts in

1Q15

Complex
results of
first Real
sequence
stored in

real part of
the Input-

Buffer

Complex
results of

second Real
sequence
stored in
imaginary
part of the

Input-Buffer

*

*

Hi
Memory

(16 bit Cplx)

(16 bit Cplx)

(16 bit Cplx)

(16 bit Cplx)

32 bit*

aR

R(1) Real

.

.

.

.

.

R(0) Real

R(N-1) Real

R(N+1) Imag

.

.

.

.

.

R(N) Imag

R(2N-1) Imag
User’s Manual 4-271 V 1.2, 2000-01



 Function Descriptions
Implementation  Refer Section 4.8.2

Example Trilib\Example\Tasking\Transforms\FFT
\expRealFFT_2_16.c, expRealFFT_2_16.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expRealFFT_2_16.cpp, expRealFFT_2_16.c
Trilib\Example\GNU\Transforms\FFT
\expRealFFT_2_16.c

Cycle Count Initialization : 7

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing :

Split Spectrum :

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                  219              224                              216

256              9766            9766                            8869

Code Size 678 bytes

FFTReal_2_16 Real Forward Radix-2 DIT FFT for 16 bits (cont’d)

7 7 N 2⁄× 2+ +

10 Log2N 1–( )× 2+

+8 N 2⁄ 1–( )× 2+

+ 13or11( ) Log2N 1–( ) N 4⁄× 2+

10 Log2N 1–( )× 2+

8 N 2⁄ 1–( )× 2+

13or11( ) Log2N 1–( ) N 4⁄× 2+

6 4 N 2⁄× 4+ +

14 11 N 2 1–⁄( )× 5+ +
User’s Manual 4-272 V 1.2, 2000-01



 Function Descriptions
IFFTReal_2_16 Real Inverse Radix-2 DIT IFFT for 16 bits

Signature short IFFTReal_2_16(CplxS     *R,    

                          CplxS     *X,

                              CplxS     *TF,

                         int           nX,

                                    int           SFlg

                         );

Inputs X

TF

nX
SFlg

:

:

:
:

Pointer to Input-Buffer of 16 bit 
complex value
Pointer to Twiddle-Factor-Buffer of 
16 bit complex value in predefined 
format
Size of Input-Buffer (power of 2)
Indicates scale down the input by 2 
if this flag is TRUE

Output R : Pointer to Output-Buffer of 16 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Real Inverse Radix-2 decimation-
in-time Fast fourier transform on the given input complex array. 
The detailed implementation is given in the Section 4.8.The 
Real IFFT is implemented by using the complex IFFT and 
before processing the input is arranged to form a single valued 
complex sequence from two complex sequences. 
User’s Manual 4-273 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   unify spectrum       //Forms a single valued complex sequence from two         
                        sequences
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * k->real - k->imag * y->real);
            y’->real = x->real - (k->real * y->real - y->imag * k->imag);
            y’->imag = x->imag - (k->real * y->imag - y->real * k->imag);
         }
         initialize k pointer
         initialize x,y pointer 
      }
      I = I/2;
      J = J*2;
   } 
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q15 format
• Input and Output has real and imaginary part packed as 16

bit data to form 32 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order 
• Input contains two complex blocks each of length N,

wherein the first block is for x1 and subsequent block is for
x2

• The output spectra contains two real sequences x1 and x2,
each of length N. x1 is in real part and x2 is in imaginary
part of output complex data

Caution • The input array gets modified after processing

IFFTReal_2_16 Real Inverse Radix-2 DIT IFFT for 16 bits (cont’d)
User’s Manual 4-274 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-72 IFFTReal_2_16

IFFTReal_2_16 Real Inverse Radix-2 DIT IFFT for 16 bits (cont’d)

Bit
reversed
data fetch

RIFFT

Real and
Imaginary parts

in 1Q15

The data is arranged
as in Figure 4-2

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary

parts

Output-Spectrum

aR

32 bit*

R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1)

Complex
input

sequence
to

generate
X1, the

first Real
output

sequence

Complex
input

sequence
to generate

X2, the
second

Real output
sequence

32 bit*

X(1)

X(2)

X(3)

X(4)

.

.

X(0)

X(N-1)

aX
Input-Buffer

*

Unify
Spectrum

Real and
Imaginary parts in

1Q15

*

aX

32 bit*

X(1) Real

.

.

.

.

.

X(0) Real

X(N-1) Real

X(N+1) Imag

.

.

.

.

.

X(N) Imag

X(2N-1) Imag

Twiddle-Factor

32 bit*

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Contains X1, the
first real

sequence in
Real part and

X2, the second
Real sequence

in imaginary part

*

Hi
MemoryHi

Memory

(16 bit Cplx)

(16 bit Cplx)(16 bit Cplx)

(16 bit Cplx)
User’s Manual 4-275 V 1.2, 2000-01



 Function Descriptions
Implementation Refer Section 4.8.2 

Example Trilib\Example\Tasking\Transforms\FFT
\expRealFFT_2_16.c, expRealFFT_2_16.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expRealFFT_2_16.cpp, expRealFFT_2_16.c
Trilib\Example\GNU\Transforms\FFT
\expRealFFT_2_16.c

Cycle Count Initialization : 6

Unify :

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing :

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                  209              219                              211

256              8868            9637                            8740

Code Size 680 bytes

IFFTReal_2_16 Real Inverse Radix-2 DIT IFFT for 16 bits (cont’d)

5 10 N 2⁄×( ) 2+ +

7 7 N 2⁄×+

10 Log2N 1–( )× 2+

+8 N 2⁄ 1–( )× 2+

+ 13or11( ) Log2N 1–( ) N 4⁄× 2+

10 Log2N 1–( )× 2+

8 N 2⁄ 1–( )× 2+

13or11( ) Log2N 1–( ) N 4⁄× 2+

6 4 N 2⁄× 4+ +
User’s Manual 4-276 V 1.2, 2000-01



 Function Descriptions
FFT_2_32 Complex Forward Radix-2 DIT FFT for 32 bits

Signature short FFT_2_32(CplxL      *R,    

                         CplxL      *X,

                         CplxL      *TF,

                         int            nX

                         );

Inputs X

TF

nX

:

:

:

Pointer to Input-Buffer of 32 bit 
complex value
Pointer to Twiddle- Factor-Buffer of 
32 bit complex value in predefined 
format
Size of Input-Buffer (power of 2)

Output R : Pointer to Output-Buffer of 32 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Complex Forward Radix-2 
decimation-in-time Fast fourier transform on the given input 
complex array. The detailed implementation is given in the 
Section 4.8.4.
User’s Manual 4-277 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * k->real + k->imag * y->real);
            y’->real = x->real - (k->real * y->real - y->imag * k->imag);
            y’->imag = x->imag - (k->real * y->imag + y->real * k->imag);
         }
         initialize k pointer
         initialize x,y pointer  
      }
      I = I/2;
      J = J*2;
   }
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q31 format
• Input and Output has real and imaginary part packed as 32

bit data to form 64 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order

FFT_2_32 Complex Forward Radix-2 DIT FFT for 32 bits (cont’d)
User’s Manual 4-278 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-73 FFT_2_32

Implementation Refer Section 4.8.4

FFT_2_32 Complex Forward Radix-2 DIT FFT for 32 bits (cont’d)

64 bit

Hi
Memory

64 bit

x(1)

x(2)

x(3)

x(4)

.

.

x(0)

x(N-1)

Bit
reversed
data fetch

aX
Input-Buffer

FFT

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary parts

Real and
Imaginary parts in

1Q31

The data is arranged as in
Figure 4-3

Twiddle-Factor

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Output-Spectrum

aR

64 bit

R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1) Hi
Memory

(32 bit Cplx)

(32 bit Cplx)

(32 bit Cplx)
User’s Manual 4-279 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Transforms\FFT\expCplxFFT_2_32
.c, expCplxFFT_2_32.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expCplxFFT_2_32.cpp, expCplxFFT_2_32.c
Trilib\Example\GNU\Transforms\FFT\expCplxFFT_2_32.c

Cycle Count Initialization : 8

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing : 4

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                   260             264                              244

256               19803         20058                         18267

Code Size 350 bytes

FFT_2_32 Complex Forward Radix-2 DIT FFT for 32 bits (cont’d)

7 9 N 2 2+⁄×+

10 Log2N 1–( )× 2+

+7 N 2⁄ 1–( )× 2+

+ 20or18( ) Log2N 1–( ) N 2⁄× 2+

10 Log2N 1–( ) 2+×
7 N 2⁄ 1–( )× 2+

20or18( ) Log2N 1–( ) N 2⁄× 2+
User’s Manual 4-280 V 1.2, 2000-01



 Function Descriptions
IFFT_2_32 Complex Inverse Radix-2 DIT IFFT for 32 bits

Signature short IFFT_2_32(CplxL      *R,    

                         CplxL       *X,

                         CplxL       *TF,

                         int             nX

                         );

Inputs X

TF

nX

:

:

:

Pointer to Input-Buffer of 32 bit 
complex value
Pointer to Twiddle- Factor-Buffer of 
32 bit complex value in predefined 
format
Size of Input-Buffer (power of 2)

Output R : Pointer to Output-Buffer of 32 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Complex Inverse Radix-2 
decimation-in-time Fast fourier transform on the given input 
complex array. The detailed implementation is given in the 
Section 4.8.4.
User’s Manual 4-281 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * y->real - k->imag * y->real);
            y’->real = x->real - (k->real * y->real - y->imag * k->imag);
            y’->imag = x->imag - (k->real * y->imag - y->real * k->imag);
         }
         initialize k pointer
         initialize x,y pointer  
      }
      I = I/2;
      J = J*2;
   }
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q31 format
• Input and Output has real and imaginary part packed as 32

bit data to form 64 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order

IFFT_2_32 Complex Inverse Radix-2 DIT IFFT for 32 bits (cont’d)
User’s Manual 4-282 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-74 IFFT_2_32

Implementation  Refer Section 4.8.4

IFFT_2_32 Complex Inverse Radix-2 DIT IFFT for 32 bits (cont’d)

64 bit

Hi
Memory

64 bit

X(1)

X(2)

X(3)

X(4)

.

.

X(0)

X(N-1)

Bit
reversed
data fetch

aX
Input-Buffer

IFFT

Real and
Imaginary parts in

1Q31

The data is arranged as in
Figure 4-3

Twiddle-Factor

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Output-Spectrum

aR

64 bit

R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1) Hi
Memory

(32 bit Cplx)

(32 bit Cplx) (32 bit Cplx)

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary parts
User’s Manual 4-283 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Transforms\FFT\expCplxFFT_2_32
.c, expCplxFFT_2_32.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expCplxFFT_2_32.cpp, expCplxFFT_2_32.c
Trilib\Example\GNU\Transforms\FFT\expCplxFFT_2_32.c

Cycle Count Initialization : 8

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing : 4

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                   244             264                              244

256               18523         20058                         18267

Code Size 352 bytes

IFFT_2_32 Complex Inverse Radix-2 DIT IFFT for 32 bits (cont’d)

7 9 N 2 2+⁄×+

10 Log2N 1–( )× 2+

+7 N 2⁄ 1–( )× 2+

+ 20or18( ) Log2N 1–( ) N 2⁄× 2+

10 Log2N 1–( ) 2+×
7 N 2⁄ 1–( )× 2+

20or18( ) Log2N 1–( ) N 2⁄× 2+
User’s Manual 4-284 V 1.2, 2000-01



 Function Descriptions
FFTReal_2_32 Real Forward Radix-2 DIT FFT for 32 bits

Signature short FFTReal_2_32(CplxL       *R,    

                           CplxL       *X,

                         CplxL       *TF,

                         int           nX

                         );

Inputs X

TF

nX

:

:

:

Pointer to Input-Buffer of 32 bit 
complex value
Pointer to Twiddle- Factor-Buffer of 
32 bit complex value in predefined 
format
Size of Input-Buffer (power of 2)

Output R : Pointer to Output-Buffer of 32 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Real Forward Radix-2 decimation-
in-time Fast fourier transform on the given input complex array. 
The detailed implementation is given in the Section 4.8.4.
User’s Manual 4-285 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * y->real + k->imag * y->real);
            y’->real = x->real - (k->real * y->real - y->imag * k->imag);
            y’->imag = x->imag - (k->real * y->imag + y->real * k->imag);
         }
         initialize k pointer
         initialize x,y pointer  
      }
      I = I/2;
      J = J*2;
   }
   Split Spectrum     // separate the real from the complex output

}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q31 format
• Input and Output has real and imaginary part packed as 32

bit data to form 64 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order 
• Input contains two real sequences, x1 and x2, each of

length N. x1 is in real part and x2 is in imaginary part of
input complex data

• The output spectra has two complex blocks, each of length
N, wherein the first block is for x1 and subsequent block for
x2

FFTReal_2_32 Real Forward Radix-2 DIT FFT for 32 bits (cont’d)
User’s Manual 4-286 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-75 FFTReal_2_32

FFTReal_2_32 Real Forward Radix-2 DIT FFT for 32 bits (cont’d)

64 bit*

x(1)

x(2)

x(3)

x(4)

.

.

x(0)

x(N-1)

Bit
reversed
data fetch

aX
Input-Buffer

RFFT

Real and
Imaginary parts in

1Q31

The data is arranged as in
Figure 4-3

Hi
Memory

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary parts

Twiddle-Factor

64 bit*

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Output-Spectrum
aR

64 bit*

R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1)
Split

Spectrum

Real and
Imaginary parts in

1Q31

Complex
results of
first Real
sequence
stored in

real part of
the Input-

Buffer

Complex
results of

second Real
sequence
stored in
imaginary
part of the

Input-Buffer

*

*

Hi
Memory

(32 bit Cplx)

(32 bit Cplx)

(32 bit Cplx)

(32 bit Cplx)

64 bit*

aR

R(1) Real

.

.

.

.

.

R(0) Real

R(N-1) Real

R(N+1) Imag

.

.

.

.

.

R(N) Imag

R(2N-1) Imag
User’s Manual 4-287 V 1.2, 2000-01



 Function Descriptions
Implementation  Refer Section 4.8.4

Example Trilib\Example\Tasking\Transforms\FFT
\expRealFFT_2_32.c, expRealFFT_2_32.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expRealFFT_2_32.cpp, expRealFFT_2_32.c
Trilib\Example\GNU\Transforms\FFT
\expRealFFT_2_32.c

Cycle Count Initialization : 8

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing : 4

Split Spectrum :

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                   302             306                              286

256               20837         21092                         19301

Code Size 784 bytes

FFTReal_2_32 Real Forward Radix-2 DIT FFT for 32 bits (cont’d)

7 9 N 2 2+⁄×+

10 Log2N 1–( )× 2+

+7 N 2⁄ 1–( )× 2+

+ 20or18( ) Log2N 1–( ) N 2⁄× 2+

10 Log2N 1–( ) 2+×
7 N 2⁄ 1–( )× 2+

20or18( ) Log2N 1–( ) N 2⁄× 2+

13 8 N 2 1–⁄( ) 5+×+
User’s Manual 4-288 V 1.2, 2000-01



 Function Descriptions
IFFTReal_2_32 Real Inverse Radix-2 DIT IFFT for 32 bits

Signature short IFFTReal_2_32(CplxL     *R,    

                          CplxL     *X,

                              CplxL     *TF,

                         int          nX,               

                                    int         SFlg

                         );

Inputs X

TF

nX
SFlg

:

:

:
:

Pointer to Input-Buffer of 32 bit 
complex value
Pointer to Twiddle- Factor-Buffer of 
32 bit complex value in predefined 
format
Size of Input-Buffer (power of 2)
Indicates scale down the input by 2 
if this flag is TRUE

Output R : Pointer to Output-Buffer of 32 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Real Inverse Radix-2 decimation-
in-time Fast fourier transform on the given input complex array. 
The detailed implementation is given in the Section 4.8.4. The 
Real IFFT is implemented by using the complex IFFT and 
before processing the input is arranged to form a single valued 
complex sequence from two complex sequences.
User’s Manual 4-289 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
    unify spectrum       //Forms a single valued complex sequence from two         
                        sequences
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * k->real - k->imag * y->real);
            y’->real = x->real - (k->real * y->real - y->imag * k->imag);
            y’->imag = x->imag - (k->real * y->imag - y->real * k->imag);
         }
         initialize k pointer
         initialize x,y pointer 
      }
      I = I/2;
      J = J*2;
   }   
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q31 format
• Input and Output has real and imaginary part packed as 32

bit data to form 64 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order 
• Input contains two complex blocks each of length N,

wherein the first block is for x1 and subsequent block is for
x2

• The output spectra contains two real sequences x1 and x2,
each of length N. x1 is in real part and x2 is in imaginary
part of output complex data

Caution • The input array gets modified after processing

IFFTReal_2_32 Real Inverse Radix-2 DIT IFFT for 32 bits (cont’d)
User’s Manual 4-290 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-76 IFFTReal_2_32

IFFTReal_2_32 Real Inverse Radix-2 DIT IFFT for 32 bits (cont’d)

Bit
reversed
data fetch

RIFFT

Real and
Imaginary parts

in 1Q15

The data is arranged
as in Figure 4-2

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary

parts

Output-Spectrum

aR

32 bit*

R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1)

Complex
input

sequence
to

generate
X1, the

first Real
output

sequence

Complex
input

sequence
to generate

X2, the
second

Real output
sequence

32 bit*

X(1)

X(2)

X(3)

X(4)

.

.

X(0)

X(N-1)

aX
Input-Buffer

*

Unify
Spectrum

Real and
Imaginary parts in

1Q15

*

aX

32 bit*

X(1) Real

.

.

.

.

.

X(0) Real

X(N-1) Real

X(N+1) Imag

.

.

.

.

.

X(N) Imag

X(2N-1) Imag

Twiddle-Factor

32 bit*

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Contains X1, the
first real

sequence in
Real part and

X2, the second
Real sequence

in imaginary part

*

Hi
MemoryHi

Memory

(16 bit Cplx)

(16 bit Cplx)(16 bit Cplx)

(16 bit Cplx)
User’s Manual 4-291 V 1.2, 2000-01



 Function Descriptions
Implementation Refer Section 4.8.4 

Example Trilib\Example\Tasking\Transforms\FFT
\expRealFFT_2_32.c, expRealFFT_2_32.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expRealFFT_2_32.cpp, expRealFFT_2_32.c
Trilib\Example\GNU\Transforms\FFT
\expRealFFT_2_32.c

Cycle Count Initialization : 8

Unify :

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing : 4

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                   298             302                              282

256               20833         21088                         19297

Code Size 816 bytes

IFFTReal_2_32 Real Inverse Radix-2 DIT IFFT for 32 bits (cont’d)

4 4 N× 2+ +

7 9 N 2 2+⁄×+

10 Log2N 1–( )× 2+

+7 N 2⁄ 1–( )× 2+

+ 20or18( ) Log2N 1–( ) N 2⁄× 2+

10 Log2N 1–( ) 2+×
7 N 2⁄ 1–( )× 2+

20or18( ) Log2N 1–( ) N 2⁄× 2+
User’s Manual 4-292 V 1.2, 2000-01



 Function Descriptions
FFT_2_16X32 Complex Forward Radix-2 DIT 16 bit mixed                                        
FFT

Signature short FFT_2_16X32(CplxS       *R,    

                               CplxS       *X,

                               CplxS       *TF,

                               int             nX

                               );

Inputs X

TF

nX

:

:

:

Pointer to Input-Buffer of 16 bit 
complex value
Pointer to Twiddle- Factor-Buffer of 
16 bit complex value in predefined 
format
Size of Input-Buffer (power of 2)

Output R : Pointer to Output-Buffer of 16 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Complex Forward Radix-2 
decimation-in-time Fast fourier transform on the given input 
complex array with better precision where it internally uses 32 
bit for computation. The detailed implementation is given in the 
Section 4.8.
User’s Manual 4-293 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * y->real + k->real * y->imag);
            y’->real = x->real - (k->real * y->real - k->imag * y->imag);
            y’->imag = x->imag - (k->real * y->imag + k->imag * y->real);
         }
         initialize k pointer
         initialize x,y pointer  
      }
      I = I/2;
      J = J*2;
   }
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q15 format
• Input and Output has real and imaginary part packed as 16

bit data to form 32 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order

FFT_2_16X32 Complex Forward Radix-2 DIT 16 bit mixed                                        
FFT (cont’d)
User’s Manual 4-294 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-77 FFT_2_16X32

Implementation Refer Section 4.8.3

FFT_2_16X32 Complex Forward Radix-2 DIT 16 bit mixed                                        
FFT (cont’d)

32 bit

32 bit

x(1)

x(2)

x(3)

x(4)

.

.

x(0)

x(N-1)

Bit
reversed
data fetch

aX
Input-Buffer

FFT

Real and
Imaginary parts in

1Q15

The data is arranged as in
Figure 4-2

Twiddle-Factor

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Output-Spectrum

aR
R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1)

Hi
Memory

(16 bit Cplx)

(16 bit Cplx)

Extra space
for

intermediate
computation

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary parts

32 bit
(16 bit Cplx)

Hi
Memory

(2N-1)

(2N-1)
User’s Manual 4-295 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Transforms\FFT
\expCplxFFT_2_16X32.c, expCplxFFT_2_16X32.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expCplxFFT_2_16X32.cpp, expCplxFFT_2_16X32.c
Trilib\Example\GNU\Transforms\FFT
\expCplxFFT_2_16X32.c

Cycle Count Initialization : 8

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing :

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                   269              272                             256

256               17508          17508                         15712

Code Size 374 bytes

FFT_2_16X32 Complex Forward Radix-2 DIT 16 bit mixed                                        
FFT (cont’d)

10 9 nX 2⁄×+

10 Log2N 1–( )× 2+

+7 N 2⁄ 1–( )× 2+

+ 16or14( ) Log2N 1–( ) N 2⁄× 2+

10 Log2N 1–( )× 2+

7 N 2⁄ 1–( ) 2+×
16or14( ) Log2N 1–( ) N 2⁄× 2+

11 4 nX×+
User’s Manual 4-296 V 1.2, 2000-01



 Function Descriptions
IFFT_2_16X32 Complex Inverse Radix-2 DIT 16 bit mixed                                        
IFFT

Signature short IFFT_2_16X32(CplxS      *R,    

                                CplxS       *X,

                                CplxS       *TF,

                                int             nX

                                );

Inputs X

TF

nX

:

:

:

Pointer to Input-Buffer of 16 bit 
complex value 
Pointer to Twiddle- Factor-Buffer of 
16 bit complex number value in 
predefined format
Size of Input-Buffer (power of 2)

Output R : Pointer to Output-Buffer of 16 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Complex Inverse Radix-2 
decimation-in-time Fast fourier transform on the given input 
complex array with better precision where it internally uses 32 
bit for computation. The detailed implementation is given in the 
Section 4.8.
User’s Manual 4-297 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * y->real - k->imag * y->real);
            y’->real = x->real - (k->real * y->real - y->imag * k->imag);
            y’->imag = x->imag - (k->real * y->imag - y->real * k->imag);
         }
         initialize k pointer
         initialize x,y pointer  
      }
      I = I/2;
      J = J*2; 
   }
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q15 format
• Input and Output has real and imaginary part packed as 16

bit data to form 32 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order

IFFT_2_16X32 Complex Inverse Radix-2 DIT 16 bit mixed                                        
IFFT (cont’d)
User’s Manual 4-298 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-78 IFFT_2_16X32

Implementation Refer Section 4.8.3

IFFT_2_16X32 Complex Inverse Radix-2 DIT 16 bit mixed                                        
IFFT (cont’d)

32 bit

32 bit

X(1)

X(2)

X(3)

X(4)

.

.

X(0)

X(N-1)

Bit
reversed
data fetch

aX
Input-Buffer

IFFT

Real and
Imaginary parts in

1Q15

The data is arranged as in
Figure 4-2

Twiddle-Factor

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Output-Spectrum

aR
R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1)

Hi
Memory

(16 bit Cplx)

(16 bit Cplx)

Extra space
for

intermediate
computation

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary parts

32 bit
(16 bit Cplx)

Hi
Memory

(2N-1)

(2N-1)
User’s Manual 4-299 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Transforms\FFT
\expCplxFFT_2_16X32.c, expCplxFFT_2_16X32.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expCplxFFT_2_16X32.cpp, expCplxFFT_2_16X32.c
Trilib\Example\GNU\Transforms\FFT
\expCplxFFT_2_16X32.c

Cycle Count Initialization : 8

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing :

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                   270              272                             256

256               17506          17508                         15712

Code Size 376 bytes

IFFT_2_16X32 Complex Inverse Radix-2 DIT 16 bit mixed                                        
IFFT (cont’d)

10 9 nX 2⁄×+

10 Log2N 1–( )× 2+

+7 N 2⁄ 1–( )× 2+

+ 16or14( ) Log2N 1–( ) N 2⁄× 2+

10 Log2N 1–( )× 2+

7 N 2⁄ 1–( ) 2+×
16or14( ) Log2N 1–( ) N 2⁄× 2+

11 4 nX×+
User’s Manual 4-300 V 1.2, 2000-01



 Function Descriptions
FFTReal_2_16X32 Real Forward Radix-2 DIT 16 bit mixed FFT

Signature short FFTReal_2_16X32(CplxS      *R,    

                                 CplxS      *X,

                               CplxS      *TF,

                               int            nX

                               );

Inputs X

TF

nX

:

:

:

Pointer to Input-Buffer of 16 bit 
complex value
Pointer to Twiddle- Factor-Buffer of 
16 bit complex value in predefined 
format
Size of Input-Buffer (power of 2)

Output R : Pointer to Output-Buffer of 16 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Real Forward Radix-2 decimation-
in-time Fast Fourier Transform on the given input complex 
array with better precision where it internally uses 32 bit for 
computation. The detailed implementation is given in the 
Section 4.8. The Real FFT is implemented by using the 
complex FFT and the output spectrum is split to separate the 
Real FFT results. 
User’s Manual 4-301 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   Bit reverse input
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * y->real + k->imag * y->real);
            y’->real = x->real - (k->real * y->real - y->imag * k->imag);
            y’->imag = x->imag - (k->real * y->imag + y->real * k->imag);
         }
         initialize k pointer
         initialize x,y pointer  
      }
      I = I/2;
      J = J*2;
   }
   Split Spectrum     // separate the real from the complex output
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q15 format
• Input and Output has real and imaginary part packed as 16

bit data to form 32 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order with the real part

separated from the complex part

FFTReal_2_16X32 Real Forward Radix-2 DIT 16 bit mixed FFT (cont’d)
User’s Manual 4-302 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-79 FFTReal_2_16X32

FFTReal_2_16X32 Real Forward Radix-2 DIT 16 bit mixed FFT (cont’d)

32 bit*

x(1)

x(2)

x(3)

x(4)

.

.

x(0)

x(N-1)

Bit
reversed
data fetch

aX
Input-Buffer

RFFT

The data is arranged
as in Figure 4-2

Hi
Memory

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary parts

Output-Spectrum
aR

R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1)
Split

Spectrum

Complex
results of first

Real sequence
stored in real

part of the
Input-Buffer

Complex results of
second Real

sequence stored in
imaginary part of the

Input-Buffer

Hi
Memory

(16 bit Cplx)

(16 bit Cplx)
32 bit*

aR R(0) Real

R(1) Real

.

R(N-1) Real

R(N) Imag

R(N+1) Imag

.

R(2N-1) Imag

32 bit*
(16 bit Cplx)

Extra space
for

intermediate
computation

(2N-1)

Real and
Imaginary parts in

1Q15

*

Twiddle-Factor

32 bit*

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

(16 bit Cplx)

Real and
Imaginary parts in

1Q15

*

User’s Manual 4-303 V 1.2, 2000-01



 Function Descriptions
Implementation  Refer Section 4.8.3

Example Trilib\Example\Tasking\Transforms\FFT
\expRealFFT_2_16X32.c, expRealFFT_2_16X32.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expRealFFT_2_16X32.cpp, expRealFFT_2_16X32.c
Trilib\Example\GNU\Transforms\FFT
\expRealFFT_2_16X32.c

Cycle Count Initialization : 8

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing :

Split Spectrum :

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                   320              324                             308

256               18004          18924                         17128

Code Size 662 bytes

FFTReal_2_16X32 Real Forward Radix-2 DIT 16 bit mixed FFT (cont’d)

10 9 nX 2⁄×+

10 Log2N 1–( )× 2+

+7 N 2⁄ 1–( )× 2+

+ 16or14( ) Log2N 1–( ) N 2⁄× 2+

10 Log2N 1–( )× 2+

7 N 2⁄ 1–( ) 2+×
16or14( ) Log2N 1–( ) N 2⁄× 2+

11 4 nX×+

14 11 N 2 1–⁄( )× 5+ +
User’s Manual 4-304 V 1.2, 2000-01



 Function Descriptions
IFFTReal_2_16X32 Real Inverse Radix-2 DIT 16 bit mixed IFFT

Signature short IFFTReal_2_16X32(CplxS     *R,    

                                CplxS     *X,

                                    CplxS     *TF,

                               int           nX,

                                          int           SFlg

                              );

Inputs X

TF

nX
SFlg

:

:

:
:

Pointer to Input-Buffer of 16 bit 
complex value
Pointer to Twiddle-Factor-Buffer of 
16 bit complex value in predefined 
format
Size of Input-Buffer (power of 2)
Indicates scale down the input by 2 
if this flag is TRUE

Output R : Pointer to Output-Buffer of 16 bit 
complex value

Return NF : Scaling factor used for 
normalization

Description This function computes the Real Inverse Radix-2 decimation-
in-time Fast fourier transform on the given input complex array 
with better precision where it internally uses 32 bit for 
computation. The detailed implementation is given in the 
Section 4.8.The Real IFFT is implemented by using the 
complex IFFT and before processing the input is arranged to 
form a single valued complex sequence from two complex 
sequences. 

Pseudo code

{
    unify spectrum       //Forms a single valued complex sequence from two         
                        sequences
   Bit reverse input
User’s Manual 4-305 V 1.2, 2000-01



 Function Descriptions
   for(l=1;l<=L;l++)  //Loop 1 Stage loop
   {   
      for(i=1;i<=I;i++);
                      //Loop 2 Group loop
      {
         for(j=1;j<=J;j++)
                      //Loop 3 Butterfly loop
         {
            x’->real = x->real + (k->real * y->real - k->imag * y->imag);
            x’->imag = x->imag + (k->imag * k->real - k->imag * y->real);
            y’->real = x->real - (k->real * y->real - y->imag * k->imag);
            y’->imag = x->imag - (k->real * y->imag - y->real * k->imag);
         }
         initialize k pointer
         initialize x,y pointer 
      }
      I = I/2;
      J = J*2;
   }  
}       

Techniques • Packed multiplication
• Load/Store scheduling
• Packed Load/Store

Assumptions • Inputs are in 1Q15 format
• Input and Output has real and imaginary part packed as 16

bit data to form 32 bit complex data
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• Input and Output are in normal order with the real part

separated from the complex part
• Input contains two complex blocks each of length N,

wherein the first block is for x1 and subsequent block is for
x2

• The output spectra contains two real sequences x1 and x2,
each of length N. x1 is in real part and x2 is in imaginary
part of output complex data

Caution • The input array gets modified after processing

IFFTReal_2_16X32 Real Inverse Radix-2 DIT 16 bit mixed IFFT (cont’d)
User’s Manual 4-306 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-80 IFFTReal_2_16X32

IFFTReal_2_16X32 Real Inverse Radix-2 DIT 16 bit mixed IFFT (cont’d)

Bit
reversed
data fetch

RIFFT

Real and
Imaginary parts

in 1Q15
The data is arranged

as in Figure 4-2

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned

Buffers will have both
Real and Imaginary

parts

Output-Spectrum

aR
R(1)

R(2)

R(3)

R(4)

.

.

R(0)

R(N-1)

Complex
input

sequence
to

generate
X1, the

first Real
output

sequence

Complex
input

sequence
to generate

X2, the
second

Real output
sequence

32 bit*

X(1)

X(2)

X(3)

X(4)

.

.

X(0)

X(N-1)

aX
Input-Buffer

*

Unify
Spectrum

aX

32 bit*

X(1) Real

.

.

.

.

.

X(0) Real

X(N-1) Real

X(N+1) Imag

.

.

.

.

.

X(N) Imag

X(2N-1) Imag

Twiddle-Factor

32 bit*

TF(1)

TF(2)

.

.

.

.

TF(0)

TF(N/2-1)

aTF

Contains X1, the
first real sequence

in Real part and
X2, the second

Real sequence in
imaginary part

*

Hi
MemoryHi

Memory

(16 bit Cplx)

(16 bit Cplx)

(16 bit Cplx)

Extra space
for

intermediate
computation

(2N-1)

32 bit*
(16 bit Cplx)

Real and
Imaginary parts in

1Q15

*

User’s Manual 4-307 V 1.2, 2000-01



 Function Descriptions
Implementation Refer Section 4.8.3 

Example Trilib\Example\Tasking\Transforms\FFT
\expRealFFT_2_16X32.c, expRealFFT_2_16X32.cpp
Trilib\Example\GreenHills\Transforms\FFT
\expRealFFT_2_16X32.cpp, expRealFFT_2_16X32.c
Trilib\Example\GNU\Transforms\FFT
\expRealFFT_2_16X32.c

Cycle Count Initialization : 8

Unify :

First Pass Loop :

Kernel :

• Stage Loop :

• Group Loop :

• Butterfly :

Post Processing :

Example

N is the number of points of FFT

N                  Actual          Higher limit                  Lower limit

8                   314              319                             303

256               17004          18795                         16999

Code Size 482 bytes

IFFTReal_2_16X32 Real Inverse Radix-2 DIT 16 bit mixed IFFT (cont’d)

5 10 N 2⁄×( ) 2+ +

10 9 nX 2⁄×+

10 Log2N 1–( )× 2+

+7 N 2⁄ 1–( )× 2+

+ 16or14( ) Log2N 1–( ) N 2⁄× 2+

10 Log2N 1–( )× 2+

7 N 2⁄ 1–( ) 2+×
16or14( ) Log2N 1–( ) N 2⁄× 2+

11 4 nX×+
User’s Manual 4-308 V 1.2, 2000-01



 Function Descriptions
4.9 Discrete Cosine Transform (DCT)

4.9.1 Algorithm

Similar to the Discrete Fourier Transform (DFT) the Discrete Cosine Transform (DCT) is
widely used for transforming a signal or image from the time or spatial domain to the
frequency domain. The DCT, especially the two-dimensional (2D) DCT plays an
important role in applications such as signal or image compression, e.g. in the JPEG and
MPEG standards. In contrast to FFT, DCT is a real valued transform. The one-
dimensional (1D) DCT of a discrete time sequence u(n) (n = 0, 1,...,N-1) is defined as

 (k = 0, 1,...,N-1) [4.126]

with

  for k = 0

                             for k = 1, 2,...N-1

The DCT Equation [4.126] can be represented in a matrix vector form

v = CNu [4.127]

where

            [4.128]

[4.129]

with

Notice that CN is an orthogonal matrix, i.e., its inverse is equal to its transpose.

CN
-1 = CN

T [4.130]

v k( ) u n( ) αN k( ) 2n 1+( )kπ
2N

---------------------------cos⋅

n 0=

N 1–

∑=

αN k( )
1 N⁄

2 N⁄



=

u
u 0( )
u 1( )

u N 1–( )
= v

v 0( )
v 1( )

v N 1–( )
=

CN

cN 0 0,( ) cN 0 1,( ) … cN 0 N 1–,( )

cN 1 0,( ) cN 1 1,( ) … cN 1 N 1–,( )

cN N 1– 0,( ) cN N 1– 1,( ) … cN N 1– N 1–,( )

=

cN k n,( ) αN k( ) 2n 1+( )kπ
2

---------------------------cos=
User’s Manual 4-309 V 1.2, 2000-01



 Function Descriptions
or 

CNCN
T = CN

TCN = identity matrix

The 2D DCT separates a two dimensional signal (i.e., an image) u(n1, n2), (n1 = 0,
1,...,N1-1; n2 = 0, 1,...,N2-1) into parts or spectral subbands of differing importance (with
respect to the visual quality of the image). The transformed image v(n1,n2) has the same
size and is defined as 

[4.131]

(k1 = 0, 1,...,N1-1; k2 = 0,1,...,N2-1)

By using the matrix notation

[4.132]

[4.133]

We can write the 2D DCT as a multiplication of three matrices

V = CN1UCN2
T

The matrix CN1 and the CN2 are defined as in Equation [4.129].

It is easy to see that the 2D DCT is separable into a sequence of 1D DCTs, N2 times 1D
DCTs of the length N1 applied to the columns of U, followed by another N1 times 1D
DCTs of the length N2 applied to the rows of CN1U. Hence, we can say that the 1D DCT
algorithm is the Kernel of the 2D one.

A direct implementation of the DCT given in Equation [4.126] requires NxN
multiplications and additions/subtractions of the same order. Like the DFT, the DCT can
be implemented more efficiently by using a fast algorithm. In the literature many fast DCT
algorithms have been developed “References” on Page 423. Among them, the sparse

N1 N2×

v k1 k2,( ) u n1 n2,( ) αN1 k1( )αN2 k2( )⋅

2n1 1+( )k1π
2N1

--------------------------------
2n2 1+( )k2π

2N2
--------------------------------coscos

n2 0=

N2 1–

∑
n1 0=

N1 1–

∑=

U

u 0 0,( ) u 0 1,( ) u 0 N2 1–,( )

u 1 0,( ) u 1 1,( ) u 1 N2 1–,( )

u N1 1– 0,( ) u N1 1– 1,( ) u N1 1– N2 1–,( )

=

V

v 0 0,( ) v 0 1,( ) v 0 N2 1–,( )

v 1 0,( ) v 1 1,( ) v 1 N2 1–,( )

v N1 1– 0,( ) v N1 1– 1,( ) v N1 1– N2 1–,( )

=

N1 N2× N2 N2×
User’s Manual 4-310 V 1.2, 2000-01



 Function Descriptions
matrix factorization algorithms decompose the coefficient matrix CN into a product of
several sparse matrices in order to reduce the number of multiplications and additions.
One such algorithm is proposed in “References” on Page 423. It is applicable to any
DCT whose transform length is a power of 2. For a length N 1D DCT, this algorithm
requires (3N/2)(log2N-1)+2 real additions and Nlog2N-(3N/2)+4 real multiplications.

The number of additions and multiplications for this particular case is 26 and 16. Note
that the input samples u(n) are in natural order while the output samples v’(k) are in bit
reversed order. The output samples v’(k) are exactly identical to those defined in
Equation [4.126] except for scaling

v(k) = v’(k)  (k = 0, 1,...,N-1)                    [4.134]

       = v’(k)/2      for N = 8

DCT is an orthogonal transform. If we decompose the scaling factor 1/2 in
Equation [4.134] in two 1/ and scale all butterflies in Figure 4-81 whose branch
coefficients are 1 and -1, by 1/ , all butterflies become an orthogonal transform.

In the following, we use this algorithm to compute an DCT. A C code is given below.
It computes actually , 8 sample 1D DCTs, based on the signal flow graph in
Figure 4-81. The first 8 DCTs (j = 8) are applied to the 8 columns of the original image
and the last 8 DCTs (j = 1) are applied to the 8 rows of the resulting image. The results
we obtain correspond to the transformed image V in Equation [4.133] except for a
scaling ( )2 = 2/N due to Equation [4.134]. The program is for 16 bit fractional data
and works in an in-place manner. The  input image U is stored in the raster scan
(row-by-row) order in a buffer of the length 64. The same buffer is also used to store the
immediate result C8U during the processing, as well as the final output V in the same
order.

2
N
----

2
2

8 8×
2 8×

2 N⁄
8 8×
User’s Manual 4-311 V 1.2, 2000-01



 Function Descriptions
Figure 4-81 Signal Flow Graph for an 8-sample 1D DCT

-1

x2

x0

x1

x3

x4

x5

x7

x6

-1

-1

-1

-1

-1

-C π/4
C π/16

C π/4

-C π/4

C 3π/16
C π/4

-S 3π/16

C π/8

S π/8

C π/4

-S 3π/8

S π/16

C 3π/8

-1
-1

C π/4

S 5π/16

C 7π/16

C5 π/16

-S 7π/16

C π/4
C π/4

X4

X1

X3

X2

X6

X7

X5

X0
User’s Manual 4-312 V 1.2, 2000-01



 Function Descriptions
Figure 4-82 Signal Flow Graph for an 8-sample 1D IDCT

-1

x2

x0

x1

x3

x4

x5

x7

x6

-1

-1

-1

-1

-1

-C π/4
C π/16

C π/4

-C π/4

C 3π/16
C π/4

-S 3π/16

C π/8

S π/8

C π/4

-S 3π/8

S π/16

C 3π/8

-1

-1

C π/4

S 5π/16

C 7π/16

C5 π/16 C π/4
C π/4

-S 3π/16

X4

X1

X3

X2

X6

X7

X5

X0
User’s Manual 4-313 V 1.2, 2000-01



 Function Descriptions
4.10 Inverse Discrete Cosine Transform (IDCT)

4.10.1 Algorithm

The Inverse Discrete Cosine Transform (IDCT) is easily derived from the DCT. By
multiplying both sides of Equation [4.127] with CN

-1 from left and considering the
orthogonality Equation [4.130] we obtain

u = CN
Tv

or

 (n = 0, 1,...,N-1) [4.135]

In other words, to get the IDCT we simply replace the DCT matrix CN by its transpose
CN

T. The same is true for the 2D IDCT, i.e.

U = CN1
TVCN2

or

[4.136]

(n1 = 0, 1,...,N1-1; n2 = 0,1,...,N2-1)

For the fast computation of IDCT, we use the same idea “References” on Page 423
as for DCT. Because each butterfly in Figure 4-81 represents an orthogonal transform
(except for a possible scaling), we only need to reserve the signal flow in Figure 4-81
in order to get a signal flow graph for IDCT. By introducing the transformed samples v(k)
in bit reversed order at the right side, we recover u’(n) in natural order at the left side.
The original samples u(n) defined in Equation [4.135] are given by

u(n) = u’(n)  (n = 0, 1,...,N) [4.137]

       = u’(n)/2      for n = 8

 

like in Equation [4.134]. The number of additions and multiplications is exactly the same
as for DCT. A C code of 16 bit IDCT is given below. It has the same structure as
for the DCT and differs only in the reversed signal flow.

u n( ) v k( ) αN k( ) 2n 1+( )kπ
2N

---------------------------cos⋅

k 0=

N 1–

∑=

u n1 n2,( ) v k1 k2,( ) αN1 k1( )αN2 k2( )⋅

2n1 1+( )k1π
2N1

--------------------------------
2n2 1+( )k2π

2N2
--------------------------------coscos

k2 0=

N2 1–

∑
k1 0=

N1 1–

∑=

2
N
----

8 8×
User’s Manual 4-314 V 1.2, 2000-01



 Function Descriptions
4.11 Multidimensional DCT (General Information)

As DCT is a separable transform, 1D DCT, defined in Equation [4.126] can be extended
to 2D DCT as follows.

2D DCT (separable)

[4.138]

u = 0, 1,...,N-1,                           cl = 1/    l = 0

v = 0, 1,...,M-1,                                  1,        

2D IDCT

[4.139]

n = 0, 1,...,N-1                          

m = 0, 1,...,M-1, 

The normalized version of 2D DCT is                              

2D DCT (normalized)

[4.140]

u = 0, 1,...,N-1,                          cl = 1/    l = 0    

v = 0, 1,...,M-1,                                1,        

2D IDCT (normalized)

[4.141]

n = 0, 1,...,N-1

m = 0, 1,...,M-1

Xu v,
c2 4

NM
----------cucv xn m,

2n 1+( )uπ
2N

---------------------------
2m 1+( )vπ

2M
-----------------------------coscos

m 0=

M 1–

∑
n 0=

N 1–

∑=

2

l 0≠

xn m, cucvXu v,
c2 2n 1+( )uπ

2N
---------------------------

2m 1+( )vπ
2M

-----------------------------coscos

v 0=

M 1–

∑
u 0=

N 1–

∑=

Xu v,
c2

cucv
2

NM
-------------- xn m,

2n 1+( )uπ
2N

---------------------------
2m 1+( )vπ

2M
-----------------------------coscos

m 0=

∑
n 0=

∑=

2
N
---- cu

n 0=

N 1–

∑ 2

M
---------cv xn m,

2m 1+( )vπ
2M

-----------------------------cos

m 0=

M 1–

∑ 2n 1+( )uπ
2N

---------------------------cos=

2

l 0≠

xn m,
2

NM
-------------- cucvXu v,

c2 2n 1+( )uπ
2N

---------------------------
2m 1+( )vπ

2M
-----------------------------coscos

v 0=

M 1–

∑
u 0=

N 1–

∑=
User’s Manual 4-315 V 1.2, 2000-01



 Function Descriptions
DCT is a separable transform, as is IDCT. An implication of this is that 2D DCT can be
implemented by a series of 1D DCTs, i.e., 1D DCTs along rows (columns) of a 2D array
followed by 1D DCTs along columns (rows) of the semi-transformed array Figure 4-83

Figure 4-83 Implementation of 2D (NxM) DCT by Series of 1D DCTs

a) 1D DCTs along columns followed by 1D DCTs along rows.
b) 1D DCTs along rows followed by 1D DCTs along columns.

N (M-point 1D-DCT’s) along rows

M (N-point 1D-DCT’s) along columns

0
1
.

N-1

Data domain

0, 1, 2, .... , M-1

x(n,m)

Transform domain

followed by

(NxM) 2D-DCT

followed by

(NxM) 2D-DCT

0, 1, 2, .... , M-1

x(n,m)

N (M-point 1D-DCT’s) along rows

M (N-point 1D-DCT’s) along columns

0
1
.

N-1

N

N

(a)

(b)
User’s Manual 4-316 V 1.2, 2000-01



 Function Descriptions
Theoretically, both are equivalent. All the properties of the ID DCT (fast algorithms,
recursivity, etc.) extend automatically to the MD-DCT. The separability property can be
observed by rewriting Equation [4.138] as follows.

[4.142]

u = 0, 1,...,N-1,                              v = 0, 1,...,M-1,

A similar manipulation on Equation [4.139] yields the separability property of the 2D
IDCT. This property is illustrated in Figure 4-83. 

Since DCT is a separable transform, it can be expressed in a matrix form as follows

2D DCT

. [4.143]

2D IDCT

[4.144]

For the 2D DCT, the sizes (dimensions) along each coordinate need not be the same.

2D DCT

[4.145]

Xu v,
c2 2

N
---- cu

2
M
----- cvxn m,

2m 1+( )vπ
2M

-----------------------------cos

m 0=

∑ 2n 1+( )uπ
2N

---------------------------cos

n 0=

∑=

2
N
---- cu

2
N
---- cuxn m,

2n 1+( )uπ
2N

---------------------------cos

n 0

N 1–

∑ 2m 1+( )vπ
2M

-----------------------------cos

m 0

M 1–

∑=

X
c2

N N×( )

2
N
---- CN

π

N N×( )

x

N N×( )

2
N
---- CN

π
T

N N×( )
=

x

N N×( )

CN
π

T

N N×( )

X
c2

N N×( )

CN
π

N N×( )
=

2
N
---- CN

π

N N×( )

CN
π

T

N N×( )

2
N
---- CN

π
T

N N×( )

CN
π

N N×( )
=

IN

N N×( )
=

X
c2

N M×( )

2
N
---- CN

π

N N×( )

x

N M×( )

2
M
----- CM

π
T

M M×( )
=

User’s Manual 4-317 V 1.2, 2000-01



 Function Descriptions
2D IDCT

[4.146]

4.11.1 Descriptions

The following DCT functions are described.

• Discrete Cosine Transform
• Inverse Discrete Cosine Transform

4.11.2 2D 8x8 Spatial Block DCT/IDCT Implementation

The DCT, IDCT is implemented using the Chen’s “References” on Page 423 Fast DCT/
IDCT one dimensional algorithm which is discussed in the earlier Section 4.10.1. The
2D DCT /IDCT exploits the orthogonal property of the algorithm and breaks the 2D 8x8
Spatial block into the 8 rows and 8 columns. 

Each row is taken as a whole and is processed by the Chen’s ID DCT as in
Equation [4.135]and the schematic is shown in the signal flow graph Figure 4-81. This
is achieved by the RDct1d macro for the DCT and the RIdct1d macro for the IDCT. The
column is then processed by the CDct1d for the DCT and the CIDct1d for the IDCT.

x

N M×( )

CN
π

T

N N×( )

X
c2

N M×( )

CM
π

M M×( )
=

2
N
---- CN

π
CN

π
T 2

N
---- CN

π
T

CN
π IN==

2
M
----- CM

π
CM

π
T

IM=
User’s Manual 4-318 V 1.2, 2000-01



 Function Descriptions
DCT_2_8 Discrete Cosine Transform

Signature DataS* DCT_2_8(DataS  *X);

Inputs X : Pointer to Real Data block  
array Input coefficients

Output None

Return R : Pointer to the Real Data block of 
 DCT coefficient

Description This function implements the 2 dimensional Discrete Cosine 
Transform. This is implemented using the FDCT algorithm 
based on the Chen’s, that falls in the class of orthogonal DCTs. 
The data is organized in the  block, the result is returned 
in the same block.

8 8×

8 8×

8 8×
User’s Manual 4-319 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   int t[12],i,j;
   for (j=8; j>0; j-=7,d-=8)
   {
      t[0] = d[0];
      t[1] = d[j];
      t[2] = d[2 * j];
      t[3] = d[3 * j];
      t[4] = d[4 * j];
      t[5] = d[5 * j];
      t[6] = d[6 * j];
      t[7] = d[7 * j];

      t[8] = t[0] + t[7];
      t[7] = t[0] - t[7];
      t[9] = t[1] + t[6];
      t[6] = t[1] - t[6];
      t[10] = t[2] + t[5];
      t[5] = t[2] - t[5];
      t[11] = t[3] + t[4];
      t[4] = t[3] - t[4];

      t[0] = t[8] + t[11];
      t[1] = t[8] - t[11];
      t[2] = t[9] + t[10];
      t[3] = t[9] - t[10];

      t[10] = r[0] * (short) (t[6] - t[5]);
      t[11] = r[0] * (short) (t[6] + t[5]);

      t[8] = t[4] + t[10];
      t[9] = t[4] - t[10];
      t[10] = t[7] + t[11];
      t[11] = t[7] - t[11];

      d[0] = (r[0] * (short)(t[0] + t[2])) >> 15;
      d[j] = (r[3] * t[11] + r[4] * t[8]) >> 15;
      d[2 * j] = (r[1] * t[1] + r[2] * t[3]) >> 15;
      d[3 * j] = (r[5] * t[10] - r[6] * t[9]) >> 15;
      d[4 * j] = (r[0] * (short)(t[0] - t[2])) >> 15;
      d[5 * j] = (r[6] * (t[10] + r[5] * t[9]) >> 15;
      d[6 * j] = (r[2] * t[1] - r[1] * t[3]) >> 15;
      d[7 * j] = (r[4] * t[11] - r[3] * t[8]) >> 15;   

DCT_2_8 Discrete Cosine Transform (cont’d)
User’s Manual 4-320 V 1.2, 2000-01



 Function Descriptions
   }
}

Techniques • Packed multiplication/addition
• Software pipelining
• Load/Store scheduling
• Packed Load/Store

Assumptions • Input is real sign extended data packed in 16 bit 
• Output is the sign extended data shifted to left by 3 bit

positions and packed in 16 bits
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• The processing is done inplace so the input block itself gets

modified by the program
• Dynamic Input range is -2048 to 2047 before scaling

DCT_2_8 Discrete Cosine Transform (cont’d)
User’s Manual 4-321 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-84 DCT_2_8

DCT_2_8 Discrete Cosine Transform (cont’d)

8 columns

8
r
o
w
s

16
bit

r
o
w
i

DCT-Row

DCT-Column

0

1

2

3

4

5

0

7

6

1 2 3 4 5 6 7

1

2

3

4

5

0

7

6

16 bit 8x8 2Dimensional Block

i i+1
Note: Input spatial block has to be

scaled up by 8
User’s Manual 4-322 V 1.2, 2000-01



 Function Descriptions
Implementation Section 4.11.2

Example Trilib\Example\Tasking\Transforms\DCT\expDCT_2_8.c, 
expDCT_2_8.cpp
Trilib\Example\GreenHills\Transforms\DCT
\expDCT_2_8.cpp, expDCT_2_8.c
Trilib\Example\GNU\Transforms\DCT\expDCT_2_8.c

Cycle Count Initialization : 4

Kernel : 453

Post Processing : 3

Code Size 444 bytes

DCT_2_8 Discrete Cosine Transform (cont’d)
User’s Manual 4-323 V 1.2, 2000-01



 Function Descriptions
IDCT_2_8 Inverse Discrete Cosine Transform

Signature DataS* IDCT_2_8(DataS *X);

Inputs X : Pointer to Real Data block  
array Input coefficients

Output None

Return R : Pointer to the Real Data block of 
DCT coefficient

Description This function implements the 2D Inverse Discrete Cosine 
Transform. This is implemented using the FIDCT algorithm 
based on the Chen’s, that falls in the class of orthogonal DCTs. 
The data is organized in the block, the result is returned 
in the same block.

8 8×

8 8×

8 8×
User’s Manual 4-324 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   int t[12],i,j;
   for (j=8; j>0; j-=7,d-=8)
   {
      t[0] = d[0];
      t[1] = d[j];
      t[2] = d[2 * j];
      t[3] = d[3 * j];
      t[4] = d[4 * j];
      t[5] = d[5 * j];
      t[6] = d[6 * j];
      t[7] = d[7 * j];

      t[8] = (r[4] * t[1] - r[3] * t[7]) >> 15;
      t[9] = (r[3] * t[1] + r[4] * t[7]) >> 15;
      t[10] = (r[5] * t[5] - r[6] * t[3]) >> 15;
      t[11] = (r[6] * t[5] + r[5] * t[3]) >> 15;
      
      t[1] = (r[0] * (short) (t[0] + t[4])) >> 15;
      t[3] = (r[0] * (short) (t[0] - t[4])) >> 15;
      t[5] = (r[2] * t[2] - r[1] * t[6]) >> 15;
      t[7] = (r[1] * t[2] + r[2] * t[6]) >> 15;

      t[0] = t[1] + t[7];
      t[2] = t[1] - t[7];
      t[4] = t[3] + t[5];
      t[6] = t[3] - t[5];

      t[1] = t[8] + t[10];
      t[3] = t[8] - t[10];
      t[5] = t[9] - t[11];
      t[7] = t[9] - t[11];

      t[10] = r[0] * (short) (t[5] - t[3]) >> 15;
      t[11] = r[0] * (short) (t[5] + t[3]) >> 15;

      d[0] = t[0] + t[7];
      d[j] = t[4] + t[11];
      d[2 * j] = t[6] + t[10];
      d[3 * j] = t[2] + t[1];
      d[4 * j] = t[2] - t[1];
      

IDCT_2_8 Inverse Discrete Cosine Transform (cont’d)
User’s Manual 4-325 V 1.2, 2000-01



 Function Descriptions
      d[5 * j] = t[6] - t[10];
      d[6 * j] = t[4] - t[11];
      d[7 * j] = t[0] - t[7]; 
   }
}

Techniques • Packed multiplication/additions
• Load/Store scheduling
• Packed Load/Store

Assumptions • Input is real sign extended data packed in 16 bit and has to
be scaled up by a factor of 8 (left shifted by 3)

• Output is the sign extended data packed in the 16 bit 
• Input is halfword aligned in IntMem and word aligned in

ExtMem
• The processing is done inplace so the input block itself gets

modified by the program
• Dynamic Input range is -2048 to 2047 before scaling

IDCT_2_8 Inverse Discrete Cosine Transform (cont’d)
User’s Manual 4-326 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-85 IDCT_2_8

IDCT_2_8 Inverse Discrete Cosine Transform (cont’d)

8 columns

8
r
o
w
s

16
bit

r
o
w
i

IDCT-Row

IDCT-Column

0

1

2

3

4

5

0

7

6

1 2 3 4 5 6 7

1

2

3

4

5

0

7

6

16 bit 8x8 2Dimensional Block

i i+1
Note: Input spatial block has to be

scaled up by 8
User’s Manual 4-327 V 1.2, 2000-01



 Function Descriptions
Implementation Section 4.11.2

Example Trilib\Example\Tasking\Transforms\DCT\expDCT_2_8.c, 
expDCT_2_8.cpp
Trilib\Example\GreenHills\Transforms\DCT
\expDCT_2_8.cpp, expDCT_2_8.c
Trilib\Example\GNU\Transforms\DCT\expDCT_2_8.c

Cycle Count Initialization : 4

Kernel : 439

Post Processing : 3

Code Size 430 bytes

IDCT_2_8 Inverse Discrete Cosine Transform (cont’d)
User’s Manual 4-328 V 1.2, 2000-01



 Function Descriptions
4.12 Mathematical Functions

4.12.1 Functions using Polynomial Approximation

The Mathematical and Trignometrical functions can be approximated by polynomial
expansion. Generally, Taylor & McLaren series are used for expansion of these
functions. The function uses the coefficients calculated by statistical analysis technique
of regression. Only limited terms of series are used. To improve the accuracy of the
output of the function, the optimized coefficients are used.

4.12.1.1 Descriptions

The following series functions are described.

• Sine
• Cosine
• Arctan
• Square Root
• Natural log
• Natural Antilog
• Exponential
• X Power Y
User’s Manual 4-329 V 1.2, 2000-01



 Function Descriptions
Sine_32 Sine

Signature DataS Sine_32(int X);

Inputs X : The radian input in [-pi,pi] range

Output None

Return R :  Output sine value of the function

Description This function calculates the sine of an angle. It takes 32 bit 
input which represents the angle in radians and returns the 16 
bit sine value.

Pseudo code

{
   int Xabs;          //Stores Absolute value
   int sign;          //sign of the result
   frac32 XbyPi;      //angle scaled down by pi
   frac32 acc;        //Output of polynomial calculation in 4Q28 format
   frac32 Rf;         //32-bit Sine value in 1Q31
   frac16 R;          //Result in 1Q15 format

   Xabs = |X|;
   if (Xabs != X)
      sign = 1;       //sign = 1 if X is in III or IV quadrant

   if (Xabs > Pi/2)   
      Xabs = Pi - Xabs;      
                      //if input angle in II or III quadrant subtract
                      //absolute value from pi
   XbyPi = Xabs (*) one_Pi;
                      //angle is scaled down by pi before being used in the
                      //polynomial calculation                            
   acc = ((((H[4] (*) XbyPi + H[3]) (*) XbyPi + H[2]) (*) XbyPi
         + H[1]) (*) XbyPi + H[0]) (*) XbyPi; 
                      //polynomial calculation - acc in 4Q28 format
   acc = acc << 3;    //acc in 1Q31 format
   if (sign == 1)     
      Rf = 0 - acc;   //sine is negative in III and IV quadrant
   R = (frac16)Rf;    //16 bit result in 1Q15 format
   return R;          //Returns the calculated sine value 
 }

Techniques • Use of MAC instructions
• Instruction ordering provided for zero overhead Load/Store

Assumptions • Input is the radian value in 3Q29 format, output is the sine
value in 1Q15 format and coefficients are in 4Q28 format
User’s Manual 4-330 V 1.2, 2000-01



 Function Descriptions
Memory Note None

Implementation Sin(x), where x is in radians is approximated using the 
polynomial expansion. 

[4.147]

radians.

Sine value in other quadrants is computed by using the 
relations,

 and  

The function takes 32 bit radian input in 3Q29 format to 
accommodate the range . The output is 16 bits in 1Q15 
format. Coefficients are stored in 4Q28 format. Constants pi, 
pi/2 and 1/pi are also stored in the data segment in 3Q29, 
3Q29 and 1Q31 formats respectively.

The absolute value of the radian input is calculated. If the 
input angle is negative (III/IV Quadrant), then sign=1. If 
absolute value of the angle is greater than pi/2 (II/III 
Quadrant), it is subtracted from pi. The angle is then scaled 
down by pi, converted to 1Q31 and used in polynomial 
calculation. The result is negated, if sign=1 to give the final 
sine result.

To have an optimal implementation with zero overhead load 
store, the polynomial in Equation [4.147] is rearranged as 
below.

[4.148]

Hence, 4 multiply-accumulate and 1 multiply instruction will 
compute the expression Equation [4.148] with a load of 
coefficient done in parallel with each of them.

Sine_32 Sine (cont’d)

x( )sin 3.140625 x π⁄( ) 0.02026367 x π⁄( )2+=

5.325196 x π⁄( )3– 0.5446778 x π⁄( )4+

+ 1.800293 x π⁄( )5

0 x π 2⁄≤ ≤

x–( )sin x( )sin–= 180 x–( )sin xsin=

π– π,( )

x( )sin 1.800293(((( x π⁄( ) 0.5446778 ) x π⁄( )+=

5.325196 ) x π⁄( )– 0.02026367 ) x π⁄( )+

+ 3.140625 ) x π⁄( )
User’s Manual 4-331 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Mathematical\expSine_32.c, 
expSine_32.cpp
Trilib\Example\GreenHills\Mathematical\expSine_32.cpp, 
expSine_32.c
Trilib\Example\GNU\Mathematical\expSine_32.c

Cycle Count With DSP 
Extensions

If input angle is in 
(I/II Quadrant)

: 15+2

If input angle is in 
(III/IV Quadrant)

: 18+2

Without DSP 
EXtensions

If input angle is in 
(I/II Quadrant)

: 16+2

If input angle is in 
(III/IV Quadrant)

: 19+2

Code Size 76 bytes

32 bytes (Data)

Sine_32 Sine (cont’d)
User’s Manual 4-332 V 1.2, 2000-01



 Function Descriptions
Cos_32 Cosine

Signature DataS Cos_32(int X);

Inputs X : The radian input in [-pi,pi] range

Output None

Return R : Output cosine value of the function

Description This function calculates the cosine of an angle. It takes 32 bit 
input which represents the angle in radians and returns the 16 
bit cosine value.

Pseudo code

{
   int Xabs;          //absolute value of angle       
   frac32 XbyPi;      //angle scaled down by pi     
   frac32 Pi = pi;
   frac32 one_Pi = 1/pi;
                      //Constant 1/pi in 1Q31 format
   int sign;          //sign of the result
   frac32 acc;        //Output of polynomial calculation in 4Q28 format 
   frac32 Rf;         //32-bit Cosine value in 1Q31 
   frac16 R;          //Result in 1Q15 format
      
   Xabs = |X|;
   X = Pi/2 - Xabs;   //Complementary angle is calculated
   Xabs = |X|;
   if (X != Xabs)
      sign = 1;       //sign = 1 if input angle is in the II or III
                      //quadrant
   XbyPi = Xabs (*) one_Pi;  
                      //angle is scaled down by pi before being used in the
                      //polynomial calculation
   acc = ((((H[4] (*) XbyPi + H[3]) (*) XbyPi + H[2]) (*) XbyPi 
         + H[1]) (*) XbyPi + H[0]) (*) XbyPi;
                      //polynomial calculation - acc in 4Q28 format
   Rf = acc << 3;     //acc in 1Q31 format
   if (sign == 1)     //cosine value is negative in the II or III quadrant
      Rf = 0 - acc;

   R = (frac16)Rf;    //cosine result in 1Q15 format
   return R;          //Returns the calculated cosine value
}

Techniques • Use of MAC instructions                             
• Instruction ordering provided for zero overhead Load/Store
User’s Manual 4-333 V 1.2, 2000-01



 Function Descriptions
Assumptions • Input is the radian value in 3Q29 format, output is the
cosine value in 1Q15 format and coefficients are in 4Q28
format

Memory Note None

Implementation Cos(x) is approximated by the same polynomial expression 
used for sine as . 

The function takes 32 bit radian input in 3Q29 format to 
accommodate the range . The output is 16 bits in 
1Q15 format. Coefficients are stored in 4Q28 format. 
Constants pi, pi/2 and 1/pi are also stored in the data segment 
in 3Q29, 3Q29 and 1Q31 formats respectively.

Absolute value of the radian input is calculated. Its 
complementary angle is determined. If the complementary 
angle is negative, the input angle is in II/III Quadrant where 
cos is negative. Hence sign=1. The absolute value of 
complementary angle is scaled down by pi, brought to 1Q31 
format and is used in the polynomial calculation. If sign=1, the 
result of the polynomial calculation is negated, to give the final 
cosine result.

The implementation of the polynomial is optimal with zero 
overhead Load/Store.

Example Trilib\Example\Tasking\Mathematical\expCos_32.c, 
expCos_32.cpp
Trilib\Example\GreenHills\Mathematical\expCos_32.cpp, 
expCos_32.c
Trilib\Example\GNU\Mathematical\expCos_32.c

Cycle Count With DSP 
Extensions

If input angle is in
(I/IV Quadrant)

: 15+2

If input angle is in
(III/II Quadrant)

: 18+2

Cos_32 Cosine (cont’d)

x( )cos 90 x–( )sin=

π– π,( )
User’s Manual 4-334 V 1.2, 2000-01



 Function Descriptions
Without DSP 
Extensions

If input angle is in
(I/IV Quadrant)

: 16+2

If input angle is in
(III/II Quadrant)

: 19+2

Code Size 68 bytes

28 bytes (Data)

Cos_32 Cosine (cont’d)
User’s Manual 4-335 V 1.2, 2000-01



 Function Descriptions
Arctan_32 Arctan

Signature short Arctan_32(int X);

Inputs X : tan value in the range [-215, 215)

Output None

Return R : Output arctan value of the function

Description This function calculates the arc tangent of the input. The input 
to the function is 32 bits. The input range is [-215, 215). The 
function returns 16 bit value which represents the angle in 
radians.
User’s Manual 4-336 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac32 Xabs;       //absolute value of input 
   frac32 X1Q31;      //|X| or 1/|X| in 1Q31 format used in the polynomial
                      //calculation
   frac32 acc;        //Output of the polynomial calculation in 1Q31 format
   int sign;          //sign of the result
   frac32 Rf;         //32 bit arctan value in 2Q30 format 
   frac16 R;          //16 bit arctan result in 2Q14 format
   
   Xabs = |X|;
   
   if (X != Xabs)
      sign = 1;       //if input tan value is negative,sign = 1 

   if (Xabs > 1)
      X1Q31 = 1/Xabs;
                      //X1Q31 = 1/|X| in 1Q31 format if |X| > 1 
   else
      X1Q31 = Xabs << 15;
                      //X1Q31 = |X| in 1Q31 format

   acc = ((((H[4] (*) X1Q31 + H[3]) (*) X1Q31 + H[2]) (*) X1Q31
         + H[1]) (*) X1Q31 + H[0]) (*) X1Q31;
                      //polynomial calculation - acc in 1Q31 format

   if (Xabs > 1)
      acc = 0.5 - acc;//polynomial result is subtracted from 0.5 if 
                      //1/|X| has been used in the calculation 
    
   Rf = acc (*) Pi;   //32 bit arctan value in radians - Rf in 2Q30 format
   R = (frac16)Rf;    //16 bit arctan value in radians in 2Q14 format
   return R;          //Returns the calculated arctan value
} 

Techniques • Use of MAC instructions                            
• Instruction ordering provided for zero overhead Load/Store

Assumptions • Input tan value is in 16Q16 format, output is the angle in
radians in 2Q14 format and coefficients are in 1Q31 format

Memory Note None

Arctan_32 Arctan (cont’d)
User’s Manual 4-337 V 1.2, 2000-01



 Function Descriptions
Implementation Arctan(x) in radians is approximated using the following 
polynomial expansion.
For x<1,

[4.149]

For  the formula

[4.150]

can be used.

As 1/x < 1 (for x>1), the polynomial of Equation [4.149] can 
be used to compute arctan(1/x).
Combining Equation [4.149] and Equation [4.150],
 
For , 

The input to the function is 32 bits in 16Q16 format. Hence 
input is in the range [-215, 215). The function returns 16 bit 
output which is the arctan value in radians. Since arctan 
values lie in the range [-pi/2, pi/2] output format is 2Q14. 32 
bits are used to store coefficients in 1Q31 format in the data 
segment. value is also stored in 3Q29 format in data 
segment. The absolute value of the input is taken in a register 
and if input is less than 0, sign is set to 1. When input is less 
than 1, the upper 16 bits of absolute value will be zero and the 
lower 16 bits represent the tan value in 0Q16. Shifting 15 
times to the left will bring the input to 1Q31 format. This value 
is used in polynomial calculation. The output of the polynomial 
is multiplied by and if sign=1, the result is negated to give 
the final arctan result.

If , the reciprocal is calculated by dividing a one in 
16Q16 format by the given input. The result gives reciprocal 
of input in 0Q32, which is converted to 1Q31. This value is 
now used in the polynomial calculation. 

Arctan_32 Arctan (cont’d)

arc x( )tan π 0.318253x 0.003314x
2

0.130908x
3

–+(=

+ 0.068542x
4

0.009159x
5 )–

x 1≥

arc x( )tan π 2⁄ arc 1 x⁄( )tan–=

x 1≥
arc x( )tan π 0.5 arc 1 x⁄( )tan–( )=

π

π

x 1>
User’s Manual 4-338 V 1.2, 2000-01



 Function Descriptions
The result of the polynomial calculation is subtracted from 0.5 
and then multiplied by pi. Once again, it is negated if sign =1 
to give the final arctan result in radians.

The implementation of the polynomial is optimal with zero 
overhead Load/Store.

Example Trilib\Example\Tasking\Mathematical\expArctan_32.c, 
expArctan_32.cpp
Trilib\Example\GreenHills\Mathematical\expArctan_32.cpp, 
expArctan_32.c
Trilib\Example\GNU\Mathematical\expArctan_32.c

Cycle Count For |X| < 1 and X > 0 : 28+2

For |X| < 1 and X < 0 : 31+2

For |X| > 1 and X > 0 : 50+2

For |X| > 1 and X < 0 : 53+2

Code Size 126 bytes

24 bytes(Data)

Arctan_32 Arctan (cont’d)
User’s Manual 4-339 V 1.2, 2000-01



 Function Descriptions
Sqrt_32 Square Root

Signature short Sqrt_32(int X);

Inputs X : Real input value in the range
[0, 214)

Output None

Return R : Output value of the function

Description This function calculates the square root of a given number. It 
takes 32 bit input in the range [0, 214) and returns 16 bit square 
root value in the range [0, 27).
User’s Manual 4-340 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   int Shcnt;         //Shift count
   int Scale;         //Scaling factor
   frac32 acc;        //Result of Polynomial calculation 
   frac32 X1Q31;      //Input scaled to 1Q31 format 
   frac16 R;          //Result in 8Q8 format
   
   Shcnt = count_lead_sign(X); 
                      // number of leading sign values
   Scale = Shcnt - 15;//Get the scale factor
   X1Q31 = X << Shcnt;// 1Q31 <- 16Q16
 
   acc = ((((H5 (*) X1Q31 + H4) (*) X1Q31 + H3) (*) X1Q31 + H2) (*) X1Q31 +
         H1) (*) X1Q31 + H0 
                      //polynomial calculation - acc in 1Q31 format
   //Input less than 1
   if (Scale >= 0)
   {
      acc = acc (*) SqrtTab[Scale];
                      //acc = acc * Scale factor
      R = (frac16) acc >> 22;
                      //8Q8 format <- 2Q30 format
   }
   //Input greater than 1
   else
   {
      acc = acc (*) SqrtTab[ShCnt+1];
                      //acc = acc * Scale factor
      R =  (frac16) acc >> 14;
                      //8Q8 format <- 10Q22 format
   }
   return R;          //Returns the calculated square root
}

Techniques • Use of MAC instructions
• Instruction ordering for zero overhead Load/Store

Assumptions • Inputs are in 16Q16 format and returned output is in 8Q8
format

• Input is always positive

Memory Note None

Sqrt_32 Square Root (cont’d)
User’s Manual 4-341 V 1.2, 2000-01



 Function Descriptions
Implementation The square root of the input value x can be calculated by 
using the following approximation series.

[4.151]

where, 

The coefficients of polynomial are stored in 2Q30 format. The 
square root table (table of scale factors) stores  in 
1Q31 format where n ranges from 0 to 15. This is same as 

 in 9Q23 format, where n ranges from 16 to 1. The 32 
bit input given is in 16Q16 format which can take values in the 
range [-215, 215). As input should be positive it will be subset 
of actual input range, i.e., it is in the range [0, 215). The 16 bit 
output returned is in 8Q8 format. So the output values are in 
the range of [0, 27). So it can accommodate inputs in the 
range [0, 214).

As the polynomial expansion needs input only in the range 0.5 
to 1, the given input has to be scaled up or scaled down. If the 
given input number is greater than 1, then it is scaled down by 
powers of two, so that scaled input value lies in the range 0.5 
to 1.This scaled input is used in polynomial calculation. The 
calculated output is scaled up by power of  to get the 
actual output.

If the input is less than 1, then it is scaled up by power of two, 
so that scaled value lies in the range 0.5 to 1. This scaled 
input is used in polynomial calculation. The calculated output 
is scaled down by power of  to get actual output.

The CLS instructions of TriCore gives directly the shiftcount, 
to scale up or scale down the input. When input is shifted by 
this count, it is brought into 1Q15 format. If shiftcount is15, 
input already exists in the range of 0.5 to 1. If shiftcount is less 
than 15, indicates input is greater than 1 and has to be scaled 
down.

Sqrt_32 Square Root (cont’d)

sqrt x( ) 1.454895x 1.34491x
2

– 1.106812x
3

+=

0.536499x
4

– 0.1121216x
5

0.2075806+ +

0.5 x 1≥ ≥

1 2⁄( )
n

2( )
n

2

1 2⁄
User’s Manual 4-342 V 1.2, 2000-01



 Function Descriptions
If shiftcount is greater than 15, indicates input is less than 1 
and has to be scaled up.

Scale factor is obtained as (15-shiftcount). The output of 
polynomial calculation is scaled by a value from square root 
table. The appropriate scale factor is obtained and multiplied 
to get the square root of given input.

The implementation of the polynomial is optimal with zero 
overhead Load/Store.

Example Trilib\Example\Tasking\Mathematical\expSqrt_32.c, 
expSqrt_32.cpp
Trilib\Example\GreenHills\Mathematical\expSqrt_32.cpp, 
expSqrt_32.c
Trilib\Example\GNU\Mathematical\expSqrt_32.c

Cycle Count If X>1 : 14+2

If X<=1 : 16+2

Code Size 88 byes

88 bytes(Data)

Sqrt_32 Square Root (cont’d)
User’s Manual 4-343 V 1.2, 2000-01



 Function Descriptions
Ln_32 Natural logarithm

Signature short Ln_32(int X);

Inputs X : Real input value in the range 
[2-16, 215)

Output None

Return R : Output value of the function

Description This function calculates logarithm of a function to the base e, 
i.e., natural logarithm. It takes 32 bit input in the range
[2-16, 215) and returns the output logarithm in the range 
[-24, 24).
User’s Manual 4-344 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   int Shcnt          //Shift count
   int Scale;         //Scaling factor
   frac32 acc;        //Result of Polynomial calculation 
   frac32 Xu1Q31;     //Input scaled to unsigned 1Q31 format
   frac32 Xsub1;      //X-1
   frac32 Rf;         //Output of polynomial calculation 
   frac16 R;          //Result in 5Q11 format
   
   Shcnt = count_lead_sign(X); 
                      // number of leading sign values
   Scale = 14 - Shcnt;//Get the scale factor
   Shcnt = Shcnt + 1; //add 1 to shift count to bring input to
                      //1 to 2(unsigned 1Q15)from 0.5 to 1
   Xu1Q31 = X << Shcnt;
                      //unsigned 1Q15 <- 16Q16
   Xsub1 = Xu1Q31 - 1;//X = X - 1

   acc = ((((H4 * Xsub1 + H3) * Xsub1 + H2) * Xsub1 + H1) * Xsub1 + H0) *
         Xsub1 
                      //polynomial calculation - acc in 1Q31 format

   acc = acc << 4;    //5Q27 <- 1Q31
   Add = Scale (*) ln2;
                      //Get the adding factor by scaling Ln2
   Add = Add << 12;   //5Q27 <- 17Q15

   Rf = acc + Add;    //Add the factor to get the result in 5Q27 
                      //format
   R = (frac16)Rf;    //result in 5Q11 format
  
   return R;          //Returns the calculated natural logarithm
}

Techniques • Use of MAC instructions
• Instruction ordering for zero overhead Load/Store

Assumptions • Inputs are in 16Q16 format and returned output is in 5Q11
format

• Input is always positive

Memory Note None

Ln_32 Natural logarithm (cont’d)
User’s Manual 4-345 V 1.2, 2000-01



 Function Descriptions
Implementation The natural logarithm of the input value x can be calculated 
using the following approximation series.

[4.152]

where,  which means 

The coefficients of polynomial are stored in 1Q31 format. The 
constant ln2 is also stored in 1Q31 format.

The 32 bit input is in 16Q16 format which can take values in 
the range [-215, 215). As input to logarithm should always be 
positive it will be subset of actual input range, i.e., it is in the 
range [2-16, 215). The 16 bit output returned format is in 5Q11 
format.

As the polynomial expansion needs x in the range 1 to 2, the 
input has to be scaled up or scaled down. If the given input 
number is greater than 1, then it is scaled down. If less than 
1, it is scaled up by powers of two, so that scaled input lies in 
the range 1 to 2. One is subtracted from this scaled input and 
this is used in polynomial calculation.

The scale factor is positive, if input is greater than 1 and 
negative, if input is less than 1. The CLS instruction of TriCore 
gives the shiftcount. When the input is shifted by this 
shiftcount it will be scaled in the range 0.5 to 1. The 
polynomial expects input to be in the range 1 to 2 (unsigned). 
So 1 is added to the shiftcount.

Scale factor is obtained as (14-shiftcount). The output of 
polynomial is added with scale times ln2 to get the natural 
logarithm of given input.

The implementation of the polynomial is optimal with zero 
overhead Load/Store.

Ln_32 Natural logarithm (cont’d)

x( )ln 0.9991150 x 1–( ) 0.4899597 x 1–( )2–=

+ 0.2856751 x 1–( )3 0.1330566 x 1–( )4–

+ 0.03137207 x 1–( )5

1 x 2≥ ≥ 0 x 1–( ) 1≥ ≥
User’s Manual 4-346 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Mathematical\expLn_32.c, 
expLn_32.cpp
Trilib\Example\GreenHills\Mathematical\expLn_32.cpp, 
expLn_32.c
Trilib\Example\GNU\Mathematical\expLn_32.c

Cycle Count For all X : 19+2

Code Size 86 bytes

24 bytes (Data)

Ln_32 Natural logarithm (cont’d)
User’s Manual 4-347 V 1.2, 2000-01



 Function Descriptions
AntiLn_16 Natural Antilogarithm

Signature int AntiLn_16(short X);

Inputs X : Real Input value in the range [-8, 8)

Output None

Return R : Output value of the function

Description This function calculates antilog of a function. It takes 16 bit 
input in the range [-23, 23) and returns 32 bit antilog value in 
the range [2-16, 216).

Pseudo code

{
   int Shcnt          //Shift count
   int Scale;         //Scaling factor
   frac32 acc;        //Result of Polynomial calculation 
   frac32 Rf;         //Result of antilog in Q format 
   frac32 X1Q31;      //Input scaled to 1Q31 format
   int Expow;         //Power of calculated polynomial 
   frac32 R;          //Result in 16Q16 format
   
   Shcnt = count_lead_sign(X);
                      //number of leading sign values
   X1Q31 = X << Shcnt;//1Q15 <- 4Q12

   Scale = 19 - Shcnt;//Get the scale factor   

   acc = ((((H5 (*) X1Q31 + H4) (*) X1Q31 + H3) (*) X1Q31 + H2) (*) X1Q31
         + H1) (*) X1Q31 + H0
                      //polynomial calculation - acc in 3Q29 format

   if(Scale <= 0)
   {
      R = acc >> 13;  //Final result in 16Q16 format
   }   
User’s Manual 4-348 V 1.2, 2000-01



 Function Descriptions
   else{
          Rf = acc;   //Rf <- acc
          Expow = 1 << Scale;
                      // Get power of e^x1Q31
          tmp = Expow - 1; 
                      //x^n needs (n-1) multiplications
          for (i=0;i<tmp;i++) 
          {
             Rf = Rf (*) acc;
                      //Multiply calculated e^x1Q31 with itself power times
          }

          //Get the shift count to convert final result in 16Q16 format
          Expow = Expow << 1;
          ShCnt = Expow - 15;

          R = Rf << ShCnt;
                      //Final result in 16Q16 format
       }

   return R;          //Returns the calculated natural antilogarithm
} 

Techniques • Use of MAC instructions
• Instruction ordering for zero overhead Load/Store

Assumptions • Input 4Q12 format, output is the antilog of the input in
16Q16 format and coefficients are in 3Q29 format

Memory Note None

AntiLn_16 Natural Antilogarithm (cont’d)
User’s Manual 4-349 V 1.2, 2000-01



 Function Descriptions
Implementation The antilog of the input value x can be calculated by using the 
following approximation series.

[4.153]

The coefficients of polynomial are stored in 3Q29 format. The 
16 bit input is in 4Q12 format which can take values in the 
range [-23, 23). The output returned is in 16Q16 format.
The input is scaled in the range -1 to +1. If the given number 
is greater than 1, it is scaled down and if it is less than -1, it is 
scaled up by powers of 2. This scaled input is used in 
polynomial calculation.

The CLS instruction of TriCore gives the shiftcount to scale up 
or scale down the input. Only when shiftcount is less than 19, 
input is scaled up or scaled down. Otherwise input is in the 
range -1 to +1. The scale factor is obtained as (19-shiftcount). 
This scale factor will always be positive for the inputs greater 
than 1 and less than -1. The output of polynomial calculation 
is multiplied with itself scale factor times to get the actual 
output.

The implementation of the polynomial is optimal with zero 
overhead Load/Store.

Example Trilib\Example\Tasking\Mathematical\expAntiLn_16.c, 
expAntiLn_16.cpp
Trilib\Example\GreenHills\Mathematical\expAntiLn_16.cpp, 
expAntiLn_16.c
Trilib\Example\GNU\Mathematical\expAntiLn_16.c

Cycle Count If X in the range 
-1 to 1

: 14+2

else :

Code Size 104 bytes

24 bytes (Data)

AntiLn_16 Natural Antilogarithm (cont’d)

AntiLn x( ) 1.0000 1.0001x 0.4990x
2

0.1705x
3

+ ++=

+ 0.0348x
4

0.0139x
5

+

16 scale 2×( ) 5 2+ + +
User’s Manual 4-350 V 1.2, 2000-01



 Function Descriptions
Expn_16 Exponential

Signature short Expn_16(DataS X);

Inputs X : Real Input value in the range [-1, 1)

Output None

Return R : Output exponent value of the 
function

Description This function calculates the exponent of the given input. It 
takes 16 bit input in the range [-1, 1) and returns the 
exponential value in 16 bits.

Pseudo code

{
   frac32 acc;        //result of polynomial calculation in 3Q29 format
   frac16 R;          //16 bit exponential result in 3Q13 format
   acc = ((((H[5] (*) X + H[4]) (*) X + H[3]) (*) X
         + H[2]) (*) X + H[1]) (*) X + H0;             
                      //polynomial calculation - acc is result in 3Q29 format
   R = (frac16)acc;   //16 bit exponential result in 3Q13 format
} 

Techniques • Use of packed data Load/Store
• Use of MAC instructions
• Instruction ordering for zero overhead Load/Store

Assumptions • Input 1Q15 format, output is the exponential of the input in
3Q13 format and coefficients are in 3Q29 format

Memory Note None

Implementation Exp(x) is approximated using the polynomial expansion given 
below.

[4.154]

The input to the function is 16 bits in 1Q15 format. Hence input 
range is [-1, 1). Input outside this range should be scaled to 
this range before calling the function. Coefficients are stored 
in 3Q29 format. Output of the function is in 3Q13 format.

The polynomial is implemented in an optimal way so as to 
have zero overhead Load/Store.

x( )exp 1.0000 1.0001x 0.4990x
2

0.1705x
3

+ ++=

+ 0.0348x
4

0.0139x
5

+

User’s Manual 4-351 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Mathematical\expExpn_16.c, 
expExpn_16.cpp
Trilib\Example\GreenHills\Mathematical\expExpn_16.cpp, 
expExpn_16.c
Trilib\Example\GNU\Mathematical\expExpn_16.c

Cycle Count 10+2  

Code Size 42 bytes

24 bytes (Data)

Expn_16 Exponential (cont’d)
User’s Manual 4-352 V 1.2, 2000-01



 Function Descriptions
XpowY_32 X Power Y

Signature int XpowY_32(int X, DataS Y);

Inputs X

Y

:

:

Real input value in the range [2-11, 
211)
power in the range [-1,1)

Output None

Return R : Output value of the function in the 
range [2-11, 211)

Description X power Y is calculated. The input is 32-bit in 12Q20 format but 
it should lie within the range [2-11, 211). The exponent
Y is 16-bit in 1Q15 format and is in the range [-1,1). The output 
is 32-bit in 12Q20 format and lies in the range
[2-11, 211)
User’s Manual 4-353 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   int Shcnt          //Shift count
   int Scale;         //Scaling factor
   frac32 acc;        //Result of Polynomial calculation 
   frac32 Xu1Q31;     //Input scaled to unsigned 1Q31 format
   frac32 Xsub1;      //X-1
   frac32 Rf;         //Output of polynomial calculation 
   frac32 LnX;        //Result of ln in 4Q28 format
   frac32 LnXPowY;    //Y*lnX in 4Q28 format
   int Expow;         //Power of calculated polynomial 
   frac32 R;          //Result in 12Q20 format
 
   
   Shcnt = count_lead_sign(X); 
                      // number of leading sign values
   Scale = 10 - Shcnt;//Get the scale factor
   Shcnt = Shcnt + 1; //add 1 to shift count to bring input to
                      //1 to 2(unsigned 1Q15)from 0.5 to 1
   Xu1Q31 = X << Shcnt;
                      //unsigned 1Q15 <- 16Q16
   Xsub1 = Xu1Q31 - 1;//X = X - 1
   if(Xsub1 == 0)
   go to XpowY_2

   acc = ((((H4 * Xsub1 + H3) * Xsub1 + H2) * Xsub1 + H1) * Xsub1 + H0) *
         Xsub1 
                      //polynomial calculation - acc in 1Q31 format

   acc = acc << 3;    //4Q28 <- 1Q31

XpowY_2:
   Scale = Scale << 26;
                      //6Q26 <- 32Q0
   Add = Scale (*) ln2;
                      //Get the adding factor by scaling Ln2
   Add = Add << 2;    //4Q28 <- 6Q26
   LnX = acc + Add;   //Add the factor to get the result in 4Q28 
                      //format
   LnXpowY = LnX (*) Y; 

   Shcnt = count_lead_sign(LnXpowY);
                      //number of leading sign values
   X1Q31 = LnXpowY << Shcnt;//1Q31 <- 4Q28                

XpowY_32 X Power Y (cont’d)
User’s Manual 4-354 V 1.2, 2000-01



 Function Descriptions
   Scale = 19 - Shcnt;//Get the scale factor   

   acc = ((((H5 (*) X1Q31 + H4) (*) X1Q31 + H3) (*) X1Q31 + H2) (*) X1Q31
             + H1) (*) X1Q31 + H0
                      //polynomial calculation - acc in 3Q29 format
   if(Scale <= 0)
   {
      R = acc >> 9;   //Final result in 12Q20 format

   }   
   else
   {
     Rf = acc;        //Rf <- acc
     Expow = 1 << Scale;
                      // Get power of e^x1Q31
     tmp = Expow - 1; 
                      //x^n needs (n-1) multiplications
     for (i=0;i<tmp;i++) 
     {
        Rf = Rf (*) acc;
                      //Multiply calculated e^x1Q31 with itself power times
     }
     //Get the shift count to convert final result in 12Q20 format
     Expow = Expow << 1;
     ShCnt = Expow - 11;

     R = Rf << ShCnt;
                      //Final result in 12Q20 format
   }

   return R;          //Returns the calculated X power Y
} 

Techniques • Use of MAC instructions
• Instruction ordering for zero overhead Load/Store

Assumptions • Inputs are in 12Q20 format and should in the range [2-11,
211) which is a subset of actual range. Exponent is in 1Q15
format and is in the range [-1,1).The returned output is in
12Q20 format and lies in the range [2-11, 211)

• Input is always positive

Memory Note None

XpowY_32 X Power Y (cont’d)
User’s Manual 4-355 V 1.2, 2000-01



 Function Descriptions
Implementation X power Y can be calculated as e(Y.lnX). The natural logarithm 
of the input value x can be calculated using the following 
approximation series.

[4.155]

where,  which means 

The coefficients of polynomial are stored in 1Q31 format. The 
constant ln2 is also stored in 1Q31 format.

The 32 bit input is in 12Q20 format which can take values in 
the range [-211, 211). As input to logarithm should always be 
positive it will be subset of actual input range, i.e., in the range 
[2-20, 211). For proper operation of lnX and antiln(Y.lnX) input 
should lie in the range [2-11, 211). The 32 bit output format is 
12Q20 which lies in the range [2-11, 211). Implementation of 
lnX is same as natural logarithm of X except that scale factor 
is obtained as (10 - shiftcount) [Refer Natural Logarithm].
The output (lnX) is multiplied with the exponent Y. The 
resulting product is in 4Q28 format. The antilog of this product 
gives the desired output.
The antilog of the input value X can be calculated by using the 
following approximation series.

[4.156]

The coefficients of polynomial are stored in 3Q29 format. 
The 32 bit input is in 4Q28 format. The output is in 12Q20 
format. Implementation is same as natural antilog of function. 
[Refer Natural Antilog].

XpowY_32 X Power Y (cont’d)

x( )ln 0.9991150 x 1–( ) 0.4899597 x 1–( )2–=

+ 0.2856751 x 1–( )3 0.1330566 x 1–( )4–

+ 0.03137207 x 1–( )5

1 x 2≥ ≥ 0 x 1–( ) 1≥ ≥

AntiLn x( ) 1.0000 1.0001x 0.4990x
2

0.1705x
3

+ ++=

+ 0.0348x
4

0.0139x
5

+

User’s Manual 4-356 V 1.2, 2000-01



 Function Descriptions
4.12.2 Random Number Generation

Randomness is typically associated with unpredictability. Mathematics provides a
precise definition of randomness that is then applied here to evaluate random number
vector. Random numbers within the context of the function Rand_16 refers to "a
sequence of independent numbers with a specified distribution and a specified
probability of falling in any given range of values".

Example Trilib\Example\Tasking\Mathematical\expXpowY_32.c, 
expXpowY_32.cpp
Trilib\Example\GreenHills\Mathematical
\expXpowY_32.cpp, expXpowY_32.c
Trilib\Example\GNU\Mathematical\expXpowY_32.c

Cycle Count When X is a power of 2 and XY in the range [e-1, e)

38+2

When X is a power of 2 and XY not in the range [e-1, e)

  for scale = 1

scale factor for antiln(YlnX)

 otherwise

scale factor for antiln(YlnX)

When X is not a power of 2 and XY in the range [e-1, e)

47+2

When X is not a power of 2 and XY not in the range [e-1, e)

  for scale = 1

scale factor for antiln(YlnX)

 otherwise

scale factor for antiln(YlnX)

Code Size 190 bytes

48 bytes (Data)

XpowY_32 X Power Y (cont’d)

42 2 scale 1 2+ +×+

42 2 scale 2 2+ +×+

51 2 scale 1 2+ +×+

51 2 scale 2 2+ +×+
User’s Manual 4-357 V 1.2, 2000-01



 Function Descriptions
Here Random Number Generator is implemented using Linear Congruential Method
(L.C.M). RNG using linear congruential method is also called pseudo RNG because
they require a seed and produce a deterministic sequence of numbers. Algorithm used
here is called L.C.M introduced by D. Lehmen in 1951.

Linear Congruential Method

This method produces a sequence of integers X1, X2, X3,... between zero and M-1
according to the following recursive relationship

 i = 0,1,2,... [4.157]

where,

Apart from LCM many Random Number Generators exist, but this method is arguably
the fastest for a 16-bit value. If a 32-bit value is needed, the code can be modified by
performing a 32-bit multiply and using 32-bit constants (RNDMULT, RNDINC). This
method, however, does have one major disadvantage. It is very sensitive to the values
of RNDMULT and RNDINC. 

Much research has been done to identify the optimal choices of these constants to avoid
degeneration. The constants used in the subroutine below were chosen based on this
research. 

M: The modulus value. This routine returns a random number from 0 to 65536 (64K) and
is not internally bounded. If the user needs a min/max limit, this must be coded externally
to this routine.

RNDSEED: An arbitrary constant, can be chosen to be any value representable by the
(0-64K) word. If zero is chosen, RNDINC should be some larger value than one.
Otherwise, the first two values will be zero and one. This is ok if the generator is given
three cycles to warm up. To change the set of random numbers generated by this
routine, change the RNDSEED value. RNDSEED=21845 is used in this routine because
it is 65536/3.

RNDMULT: Should be chosen such that the last three digits are even-2-1 (such as
xx821, x421, etc). RNDMULT=31821 is used in this routine.

Xi : the initial value, called the seed

a   : constant multiplier (RNDMULT)

c : increment (RNDINC)

M : modulus

Xi 1+ aXi c+( )modM=
User’s Manual 4-358 V 1.2, 2000-01



 Function Descriptions
RNDINC:   In general, this constant can be any prime number related to M (or 64K in this
case).Two values were actually tested, 1 and 13849. Research shows that RNDINC (the
increment value) should be chosen by the following formula

[4.158]

Using M=65536, RNDINC=13849. (as indicated above.)

RNDINC=13849 is used in this routine.

Because PRNG’s employ a mathematical algorithm for number generation, all PRNG’s
possess the following properties:

• A seed value is required to initialize the equation
• The sequence will cycle after a particular period

4.12.2.1 Description

The following Random Number Generation functions are described.

• Random Number Initialization
• Random Number Generator

RNDINC 1 2⁄ 1 6⁄ SQRT 3( )×( )–( ) M×( )=
User’s Manual 4-359 V 1.2, 2000-01



 Function Descriptions
RandInit_16 Random Number Initialization

Signature void   RandInit_16(void);

Inputs None

Output None

Return None

Description RandInit_16 function initializes the value of seed stored in
global memory location for 16-bit random number generation
routine.

Pseudo code None

Techniques None

Assumptions None

Memory Note

Figure 4-86 RandInit_16 

Implementation RndSeed, the seed for Random Vector Generator is initialized 
from global memory. Assembler directive .space is used to 
reserve a block of memory. The seed value is stored in this 
memory. This memory is declared as global so that seed 
value can be accessed while generating random vector.

Example Trilib\Example\Tasking\Mathematical\expRandInit_16.c,
expRandInit_16.cpp

Trilib\Example\GreenHills\Mathematical
\expRandInit_16.cpp, expRandInit_16.c
Trilib\Example\GNU\Mathematical\expRandInit_16.c

Cycle Count 2+2

Code Size 14 bytes

RandSeedaRndSeed

Declared as Global
User’s Manual 4-360 V 1.2, 2000-01



 Function Descriptions
Rand_16  Random Number Generator

Signature void Rand_16(int   nX,
                       int   *R
                      );

Inputs nX : Size of output vector

R : Pointer to output vector

Output R[nX] : Output vector

Return None

Description Rand_16 function computes vector of 16 bit random numbers.
Seed value is initialized by RandInit_16 function. This function
uses 16 bit predefined RandMul, RandInc values to calculate
output vector of given size. After calculation of random vector
the seed in memory is updated. So if this function is called
again, will use this new seed value and vector generated will
be different from the original one.

Pseudo code

{
   int i;
   for (i=0;i<max;i++)
   {
      rndvec[i] = (rndseed*rndmul+rndinc)%modulus;
                     //Rndvec=16-bit random number
                     //RndSeed=Seed value=21845,Userdefined constant
                     //RndMul=Multiplier=31821,Userdefined constant
                     //RndInc=Increment=13849, Userdefined constant   
                     //Modulus=65536,Userdefined constant
                          
   }
   rndseed = rndvec[i];
}

Techniques • Instruction ordering for zero overhead Load/Store

Assumptions • Uses seed value from the memory location which can be
initialized by Rand initialization routine
User’s Manual 4-361 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-87 Rand_16 

Implementation Random vector generation uses

[4.159]

RndSeed is initialized by routine RandInit_16, rest other 
constant values are stored immediate to data registers. 
viz.,RndMul, RndInc, Modulus.
Rndseed stored in global memory is accessed as external 
variable and Random Vector is calculated as per above 
equation.

Example Trilib\Example\Tasking\Mathematical\expRand_16.c,
expRand_16.cpp

Trilib\Example\GreenHills\Mathematical\expRand_16.cpp, 
expRand_16.c
Trilib\Example\GNU\Mathematical\expRand_16.c

Cycle Count With DSP 
Extensions

Without DSP 
Extensions

Code Size 38 bytes

Rand_16  Random Number Generator (cont’d)

RandSeedaRndSeed

Initialized in Rndinit

Randvec RndSeed RndMul× RndInc+( )Modulus=

4 nX 8( )× 1 2+ + +

4 nX 8( )× 1 2+ + +
User’s Manual 4-362 V 1.2, 2000-01



 Function Descriptions
4.13 Matrix Operations

A matrix is a rectangular array of numbers (or functions) enclosed in brackets. These
numbers (or functions) are called entries or elements of the matrix.The number of entries
in the matrix is product of number of rows and columns. An matrix means matrix
with m rows and n columns. In the double-subscript notation for the entries, the first
subscript always denotes the row and the second the column.

4.13.1 Descriptions

The following Matrix Operations are described.

• Addition
• Subtraction
• Multiplication
• Transpose

m n×
User’s Manual 4-363 V 1.2, 2000-01



 Function Descriptions
MatAdd_16 Addition

Signature void MatAdd_16 (short    X[ ] [MAXCOL],
                            short    Y[ ] [MAXCOL], 
                            short    R[ ] [MAXCOL], 
                            int       nRow,        
                            int       nCol         
                            );

Inputs X
Y
R 
nRow
nCol 

:
:
:
:
:

Pointer to first matrix
Pointer to second matrix
Pointer to output matrix
Number of rows
Number of columns

Output R : Pointer to output matrix which is 
the sum of the matrices X and Y

Return None

Description This function performs the addition of two matrices. It takes 
pointers to the two matrices, pointer to the output matrix, size 
of row and size of column as input. The entries in the matrices 
are 16 bit values. The output matrix is stored starting from the 
address which is sent as input.

Pseudo code

{
   short *R;          //Ptr to a two dimensional output array of nRow   
                      //rows and nCol columns
   int Tmp;  

   Tmp = nRow * nCol; //number of elements 
   loopCnt = Tmp/4    //4 additions performed per loop
 
   for(i=0;i<loopCnt;i+=4)
   {
      *(R+i) = *(X+i) + *(Y+i);
      *(R+i+1) = *(X+i+1) + *(Y+i+1);
      *(R+i+2) = *(X+i+2) + *(Y+i+2);
      *(R+i+3) = *(X+i+3) + *(Y+i+3);
   }
}

Techniques • Loop Unrolling, 4 additions/loop
• Use of packed data Load/Store
• Use of packed addition with saturation
• Instruction ordering provided for zero overhead Load/Store
User’s Manual 4-364 V 1.2, 2000-01



 Function Descriptions
Assumptions • nRow = 2*m, m = 1,2,3...
• nCol = 2*n, n = 1,2,3...

Memory Note

Figure 4-88 MatAdd_16

MatAdd_16 Addition (cont’d)

aX

X[0][1]

.

X[0][nCol-1]

X[1][0]

X[1][1]

.

X[0][0]

X[nRow-1][nCol-1]

+

Input-Buffer-1

short

Y[0][1]

.

Y[0][nCol-1]

Y[1][0]

Y[1][1]

.

Y[0][0]

Y[nRow-1][nCol-1]

+

aY

Input-Buffer-2

R[0][1]

.

R[0][nCol-1]

R[1][0]

R[1][1]

.

R[0][0]

R[nRow-1][nCol-1]

Output-Buffer

aR

short

shortshort

Packed
add

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned
User’s Manual 4-365 V 1.2, 2000-01



 Function Descriptions
Implementation The inputs to the function are three pointers (one each to each 
of the input matrices to be added and one to the output matrix) 
and the number of rows and number of columns. Both number 
of rows and number of columns are multiple of two. Hence the 
number of elements could be 4,8,12,.... This fact is made use 
of in implementing the matrix addition in an optimal manner. 
Addition is performed in a loop. Using TriCore’s load 
doubleword instruction, four elements of each matrix are 
loaded in two data register pairs. Using packed arithmetic on 
halfwords, two of the 16 bit entries can be added in one cycle. 
Hence, by using two packed add instructions per loop, the 
loop count is brought down by a factor of four. The loop is 
executed (nRow * nCol)/4 times.

Example Trilib\Example\Tasking\Matrix\expMatAdd_16.c, 
expMatAdd_16.cpp
Trilib\Example\GreenHills\Matrix\expMatAdd_16.cpp, 
expMatAdd_16.c
Trilib\Example\GNU\Matrix\expMatAdd_16.c

Cycle Count Pre-loop : 5

Loop :

Post-loop : 0+2

Code Size 52 bytes

MatAdd_16 Addition (cont’d)

3 nRow× nCol×
4

------------------------------------------- 2+
User’s Manual 4-366 V 1.2, 2000-01



 Function Descriptions
MatSub_16 Subtract

Signature void MatSub_16(short    X[ ] [MAXCOL],
                           short    Y[ ] [MAXCOL], 
                           short    R[ ] [MAXCOL], 
                           int       nRow,        
                           int       nCol         
                           );

Inputs X
Y
R
nRow
nCol  

:
:
:
:
:

Pointer to first matrix
Pointer to second matrix
Pointer to output matrix
Number of rows
Number of columns

Output R : Pointer to output matrix which is 
the subtraction of the matrices X 
and Y

Return None

Description This function performs the subtraction of two matrices. It takes 
pointers to the two matrices, pointer to the output matrix, size 
of row and size of column as input. The entries in the matrices 
are 16 bit values. The output matrix is stored starting from the 
address which is sent as input.

Pseudo code

{
   short *R;          //Ptr to a two dimensional output array of nRow   
                      //rows and nCol columns
   int Tmp;  

   Tmp = nRow * nCol; //number of elements 
   loopCnt = Tmp/4    //4 subtractions performed per loop

   for(i=0;i<loopCnt;i+=4)
   {
      *(R+i) = *(X+i) - *(Y+i);
      *(R+i+1) = *(X+i+1) - *(Y+i+1);
      *(R+i+2) = *(X+i+2) - *(Y+i+2);
      *(R+i+3) = *(X+i+3) - *(Y+i+3);
   }
}

User’s Manual 4-367 V 1.2, 2000-01



 Function Descriptions
Techniques • Loop Unrolling, 4 subtractions/loop
• Use of packed data Load/Store
• Use of packed subtraction with saturation
• Instruction ordering provided for zero overhead Load/Store

Assumptions • nRow = 2*m, m = 1,2,3...
• nCol = 2*n, n = 1,2,3...

MatSub_16 Subtract (cont’d)
User’s Manual 4-368 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-89 MatSub_16

MatSub_16 Subtract (cont’d)

aX

X[0][1]

.

X[0][nCol-1]

X[1][0]

X[1][1]

.

X[0][0]

X[nRow-1][nCol-1]

-

Input-Buffer-1

short

Y[0][1]

.

Y[0][nCol-1]

Y[1][0]

Y[1][1]

.

Y[0][0]

Y[nRow-1][nCol-1]

-

aY

Input-Buffer-2

R[0][1]

.

R[0][nCol-1]

R[1][0]

R[1][1]

.

R[0][0]

R[nRow-1][nCol-1]

Output-Buffer

aR

short

shortshort

Packed
sub

Alignment of Input &
Output Buffers

IntMem - halfword aligned

ExtMem - word aligned
User’s Manual 4-369 V 1.2, 2000-01



 Function Descriptions
Implementation The inputs to the function are three pointers (one each to each 
of the input matrices to be subtracted and one to the output 
matrix) and the number of rows and number of columns. Both 
number of rows and number of columns are multiple of two. 
Hence the number of elements could be 4, 8, 12,.... This fact 
is made use of in implementing the matrix subtraction in an 
optimal manner. Subtraction is performed in a loop. Using 
TriCore’s load doubleword instruction, four elements of each 
matrix are loaded in two data register pairs. Using packed 
arithmetic on halfwords, two of the 16 bit entries can be 
subtracted in one cycle. Hence by using two packed subtract 
instructions per loop, the loop count is brought down by a 
factor of four. The loop is executed (nRow * nCol)/4 times.

Example Trilib\Example\Tasking\Matrix\expMatSub_16.c, 
expMatSub_16.cpp
Trilib\Example\GreenHills\Matrix\expMatSub_16.cpp, 
expMatSub_16.c
Trilib\Example\GNU\Matrix\expMatSub_16.c

Cycle Count Pre-loop : 5

Loop :

Post-loop : 0+2

Code Size 52 bytes

MatSub_16 Subtract (cont’d)

3 nRow× nCol×
4

------------------------------------------- 2+
User’s Manual 4-370 V 1.2, 2000-01



 Function Descriptions
MatMult_16 Multiplication

Signature DataS MatMult_16(DataS    X[] [MaxCol],
                              DataS    Y[] [MaxCol],
                              DataS    R[] [MaxCol],  
                              int        nRowX,        
                              int        nColX,
                              int        nColY
                              );

Inputs X
Y
R
nRowX
nColX
nColY

:
:
:
:
:
:

Pointer to first matrix
Pointer to second matrix
Pointer to output matrix
Number of rows of first matrix
Number of columns of first matrix
Number of columns of second 
matrix

Output R : Pointer to output matrix which is 
the multiplication of the matrices X 
and Y

Return None

Description The multiplication of two matrices X and Y is done. Both the 
input matrices and output matrix are 16-bit. All the matrices are 
halfword aligned. All the element of the matrix are stored row-
by-row in the buffer.
User’s Manual 4-371 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   int nRowX;         //Number of rows of first matrix
   int nColX;         //Number of columns of first matrix
   int nColY;         //Number of columns of second matrix
   frac16 R;          //Result of matrix multiplication
   frac32 acc;

   for(i=0; i<nRowX; i++)
                      //Outer loop is executed nRow times
   {
      for(j=0; j<nColY; j=j+2)
                      //Middle loop is executed nColY/2 times
      {
         acc = 0;
         for(k=0; k<nColX/2; k++)
                      //Inner loop is executed nColX/2 times
         {
            acc += (sat rnd) Y[i][j+1] (*) X[i][j] || Y[i][j] (*) X[i][j]
            acc += (sat rnd) Y[i+1][j+1] (*) X[i][j+1] || Y[i+1][j] (*)
            X[i][j+1]
         }
         R[i][j] = (frac16)accLo;
         R[i][j+1] = (frac16)accHi;
      }
   }
}   
   

Techniques • Use of packed data Load/Store
• Use of packed MAC instruction
• Instruction ordering for zero overhead Load/Store

Assumptions • nRowX = 2*l,                  l = 1,2,3...
• nColX = nRowY = 2*m,  m = 1,2,3...
• nColY = 2*n,                  n = 1,2,3...

MatMult_16 Multiplication (cont’d)
User’s Manual 4-372 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-90 MatMult_16

MatMult_16 Multiplication (cont’d)

aX

X[0][1]

.

X[0][nColX-1]

X[1][0]

X[1][1]

.

X[0][0]

X[nRowX-1][nColX-1]

Input-Matrix-1

Y[0][1]

.

Y[0][nColY-1]

Y[1][0]

Y[1][1]

.

Y[0][0]

Y[nColX-1][nColY-1]

aR

Input-Matrix-2

R[0][1]

.

R[0][nColY-1]

R[1][0]

R[1][1]

.

R[0][0]

R[nRowX-1][nColY-1]

Output-Matrix

halfword
aligned

halfword
aligned

halfword
aligned

PACKED
MAC

aY
User’s Manual 4-373 V 1.2, 2000-01



 Function Descriptions
Implementation The pointer to both the input matrices (X and Y), pointer to 
output matrix (R), number of rows of X (nRowX), number of 
columns of X (nColX) and number of columns of Y (nColY) are 
sent as arguments.

The implementation uses three loops:
The outer loop is executed nRowX times. The middle loop is 
executed nColY/2 times and the inner loop is executed nColX/
2 times.

In the outer loop, the pointer is initialized to first element of X 
(X[0][0]). For every next iteration of loop it is updated to point 
to next row (X[i+1][0]). Thus this loop is executed nRowX 
times.

In the middle loop, the pointer to X is always initialized to point 
to the row of X selected by outer loop. The pointer to Y is 
initialized to first element of Y (Y[0][0]). For every next iteration 
of loop it is updated to point to next to next column of Y 
(Y[i][j+2]). Since the two columns are considered in one pass 
of inner loop, this loop is executed nColY/2 times.

In the inner loop two values of X and two values of Y are 
loaded using load word instruction. Two packed MAC 
instructions are used in this loop.

First packed MAC uses X[i][j] and following operation is 
performed.

[4.160]

Second packed MAC uses X[i][j+1] and following operation is 
performed.

[4.161]

As two values from the selected row of X are used in each 
pass, this loop is executed nColX/2 times.

MatMult_16 Multiplication (cont’d)

acc acc Y i[ ] j 1+[ ] X i[ ] j[ ] Y i[ ] j[ ] X i[ ] j[ ]⋅||⋅+=

acc acc Y i 1+[ ] j 1+[ ] X i[ ] j 1+[ ] Y i i+[ ] j[ ]||⋅+=

X i[ ] j 1+[ ]
User’s Manual 4-374 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Matrix\expMatMult_16.c, 
expMatMult_16.cpp
Trilib\Example\GreenHills\Matrix\expMatMult_16.cpp, 
expMatMult_16.c
Trilib\Example\GNU\Matrix\expMatMult_16.c

Cycle Count

Code Size 100 bytes

MatMult_16 Multiplication (cont’d)

8 nRowX
nColY

2
----------------- 6

nColX
2

----------------- 6( ) 2 or1( )+ + 1 4+ +
 
 
 

1+ +
User’s Manual 4-375 V 1.2, 2000-01



 Function Descriptions
MatTrans_16 Transpose

Signature void MatTrans_16(short    X[ ] [MAXCOL],    
                             short   R[ ] [MAXROW], 
                             int      nRow,        
                             int      nCol         
                             );

Inputs X
R
nRow
nCol 

:
:
:
:

Pointer to input matrix
Pointer to output matrix
Number of rows
Number of columns

Output R : Pointer to output matrix which is 
the transpose of the matrix X 

Return None

Description This function performs transpose of the given matrix. It takes 
pointers to input and output matrix, size of row and size of 
column as input. The entries in the matrix are 16 bit values. 
The output matrix is stored from the address which is sent as 
input.

Pseudo code

{
   int i,j;
   for(i=0;i<nCol;i++)//Column loop
   {  K = 0;
      for(j=0;j<nRow/2;j++)
                      //Row loop
      {
         R[i][k] = X[k][i];
                      //Two elements of input matrix are read
                      //and stored
         R[i][k+1] = X[k+1][i];
         k = K+2;
      }
   }
}

Techniques • Use of packed data Load/Store
• Instruction ordering provided for zero overhead Load/Store

Assumptions • nRow = 2*m, m = 1,2,3...
• nCol = 2*n, n = 1,2,3...
User’s Manual 4-376 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-91 MatTrans_16

Implementation The inputs to the function are two pointers to the matrices 
(input matrix and output matrix respectively), number of rows 
and number of columns. Both number of rows and number of 
columns are multiple of 2. The outer loop is executed number 
of column times. The inner loop is executed nRow/2 times. In 
the row loop two input elements from first column are read and 
packed. Using TriCore’s store word instruction, it is stored in 
first row of output matrix. The inner loop is executed for the 
first column. Then pointer is made to point to second element 
in the first row. Then inner loop is executed for second 
column. Thus outer loop is executed number of column times 
and transpose is obtained.
 

Example Trilib\Example\Tasking\Matrix\expMatTrans_16.c, 
expMatTrans_16.cpp
Trilib\Example\GreenHills\Matrix\expMatTrans_16.cpp, 
expMatTrans_16.c
Trilib\Example\GNU\Matrix\expMatTrans_16.c

MatTrans_16 Transpose (cont’d)

aX

X[0][1]

.

X[0][nCol-1]

X[1][0]

X[1][1]

.

X[0][0]

X[nRow-1][nCol-1]

aR

R[0][1]

.

R[0][nCol-1]

R[1][0]

R[1][1]

.

R[0][0]

R[nRow-1][nCol-1]

short short

Input-Buffer Output-Buffer
User’s Manual 4-377 V 1.2, 2000-01



 Function Descriptions
Cycle Count For all 
X[nRow][nCol]

:

Code Size 52 bytes

MatTrans_16 Transpose (cont’d)

3
nRow

2
--------------- 
  5× 2 5+ + nCol×+

+2+2
User’s Manual 4-378 V 1.2, 2000-01



 Function Descriptions
4.14 Statistical Functions

4.14.1 Descriptions

The following Statistical functions are described.

• Autocorrelation
• Convolution
• Mean Value

Autocorrelation

Correlation determines the degree of similarity between two signals. If two signals are
identical their correlation coefficient is 1, and if they are completely different it is 0. If the
phase shift between them is 180 and otherwise they are identical, then correlation
coefficient is -1.

There are two types of correlation Cross Correlation and Autocorrelation.

When two independent signals are compared, the procedure is cross correlation. When
the same signal is compared to phase shifted copies of itself, the procedure is
autocorrelation. Autocorrelation is used to extract the fundamental frequency of a signal.
The distance between correlation peaks is the fundamental period of the signal. Discrete
correlation is simply a vector dot product.

[4.162]

where,

N = nX - j -1 (j = 0, 1,...,nR-1),

nX = Size of input vector

nR = Desired number of outputs. It can take values from 1 to nX

Autocorrelation is given by

 (j = 0, 1,...,nR-1) [4.163]

i is the index of the array, j is the lag value, as it indicates the shift/lag considered for the
R(j) autocorrelation. N is the correlation length and it determines how much data is used
for each correlation result. When R(j) is calculated for a number of j values, it is referred
to as autocorrelation function. 

R j( ) x i( ) y i j+( )×

i 0=

N

∑=

R j( ) x i( ) x i j+( )×

i 0=

N

∑=
User’s Manual 4-379 V 1.2, 2000-01



 Function Descriptions
Convolution

Discrete convolution is a process, whose input is two sequences, that provide a single
output sequence.

Convolution of two time domain sequences results in a time domain sequence. Same
thing applies to frequency domain.

Both the input sequences should be in the same domain but the length of the two input
sequences need not be the same.

Convolution of two sequences X(k) and H(k) of length nX and nH respectively can be
given mathematically as

[4.164]

The resulting output sequence R(n) is of length nX+nH-1.

The convolution in time domain is multiplication in frequency domain and vice versa.

R n( ) H k( ) X n k–( )⋅

k 0=

nX nH 2–+

∑=
User’s Manual 4-380 V 1.2, 2000-01



 Function Descriptions
ACorr_16 Autocorrelation

Signature void ACorr_16( DataS *X,
                         DataL *R,
                         int         nX,
                         int         nR
                         );

Inputs X
R

nX
nR

:
:

:
:

Pointer to Input-Vector
Pointer to Output-Vector containing 
the first nR elements of the positive 
side of the autocorrelation function 
of the vector X
Size of vector X
Size of vector R

Output R : Output-Vector

Return None  

Description The function performs the positive side of the autocorrelation 
function of real vector X. The arguments to the function are 
pointer to the input vector, pointer to output buffer to store 
autocorrelation result, size of input buffer (only even) and 
number of auto correlated outputs desired. The input values 
are in 16 bit fractional format and output values are in 32 bit 
fractional format. The implementation is optimal and works if 
size of output buffer is even/odd.
User’s Manual 4-381 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac16 *X1;        //Ptr to input vector 
   frac16 *X2;        //Ptr to input vector + LagCount
   frac64 acc;        //Autocorrelation result   
   int dCnt;          //Correlation loop count
   //Macro
   macro ACorr;          
   
   {
      int aCorlen;    //Correlation loop count
      aCorlen = dCnt; //Correlation loop count for current autocorrelation
                      //output
      for(i=0; i<aCorlen; i++)
      {
         acc = acc + *(X1++) * *(X2++) + *(X1++) * *(X2++);
                      //acc = acc + X(0) * X(0+aLagCnt) + X(1) *
                      //X(1+aLagCnt)(even correlation length) (or) 
                      //acc = acc + X(1) * X(1+aLagCnt) + X(2) * X(2+aLagCnt)
                      //(odd correlation length)
      }      
   }
   
   ACorr_16:
   {
      int lflag = 0;  
      int aLagCnt = 0;//First autocorrelation output is with zero lag
      int dCnt = nX/2;
      X1 = X;         //Initialize first Ptr to start of input vector
      if (nR%2 != 0)
      {
         nR++;
         lflag = 1;   //lflag = 1 if nR is odd
      }
      //If desired no. of output is 1 or 2 skip ACorr_OutDataL
      if (nR == 2)
      go to ACorr_R_1or2;
      
      //ACorr_OutDataL
      for (i=0; i<nR/2-1; i++)
      {
         acc = 0;     //Clear accumulator
         X2 = X + aLagCnt;                                              
                      //Second Ptr initialized to first Ptr plus an offset

ACorr_16 Autocorrelation (cont’d)
User’s Manual 4-382 V 1.2, 2000-01



 Function Descriptions
                      //of aLagCnt
         ACorr;       //Autocorrelation computation   
         *R++ = (frac32_sat) acc;
                      //Autocorrelation result converted to 32 bits with
                      //saturation and stored to output buffer   
         acc = 0;     //Clear accumulator
         aLagCnt = aLagCnt + 2;
                      //Lag count is incremented for the next correlation
         X1 = X;      //Initialize first Ptr to start of input vector
         X2 = X2 + alagCnt;
                      //Second Ptr initialized to first Ptr plus an offset
                      //of aLagCnt

         //Autocorrelation computation
         dCnt--;
         acc = acc + *(X1++) * *(X2++);
                      //acc = acc + X(0) * X(0+aLagCnt)
         ACorr;
         X1 = X;      //Initialize first Ptr to start of input vector
         aLagCnt = aLagCnt + 1;
                      //Lag cnt incremented for next autocorrelation       
                      //computation
      } 

   //Last two results (if nR is even) or last one result (if nR is
   //odd) is calculated outside the loop   
   ACorr_R_1or2:      
      acc = 0;        //Clear accumulator
      X2 = X + aLagCnt;
      ACorr;
      *R++ = (frac32_sat)acc;
      if (lflag == 1) //Jump to ACorr_16_Ret if lflag = 1
      go to ACorr_Ret;
      else
         acc = 0;     //Clear accumulator
         X1 = X;      //Initialize first Ptr to start of input vector 
         X2 = X2 + aLagCnt;
         acc = acc + *(X1++) * *(X2++);
         //If nR = nX, jump to ACorr_Rlast
      if (dCnt = 0)
         go to ACorr_Rlast;
      else
              

ACorr_16 Autocorrelation (cont’d)
User’s Manual 4-383 V 1.2, 2000-01



 Function Descriptions
      {
         dCnt--;
         ACorr;
      }
   ACorr_Rlast:
      (*R++)(frac32_sat)acc;
   ACorr_Ret:
   }
} 

 Techniques • Loop unrolling is done so that implementation is efficient for
both even and odd number of desired outputs. Last two
outputs (for nR even) or last one output (for nR odd) is
computed outside the loop

• A macro ACorr is used to calculate each autocorrelation
output. The macro uses packed load and dual MAC to
reduce the number of cycles for a given correlation length

• One pass through the loop calculates two outputs, i.e.,
there are two calls to the macro

• For odd correlation length one multiplication is performed
before calling the macro

• Implementation is optimal for both even and odd values of
nR

• Intermediate result stored in 64 bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store  

Assumptions • Input is in 1Q15 format
• Output is in 1Q31 format

ACorr_16 Autocorrelation (cont’d)
User’s Manual 4-384 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-92 ACorr_16 

ACorr_16 Autocorrelation (cont’d)

Input-Vector

aX1

1Q15

X(1)

X(2)

.

X(n-1)

X(n)

X(n+1)

X(0)

.

aX

aX2 = aX1 + lag count

aX2

Dual MAC
(even

Corr.len)

MAC (odd
Corr.len)

halfword
aligned

Dual MAC
(odd

Corr.len)

Output-Vector

aR
R(1)

R(2)

.

.

.

.

R(0)

R(nR-1)

1Q31

halfword
aligned
User’s Manual 4-385 V 1.2, 2000-01



 Function Descriptions
Implementation Correlation is similar to FIR filtering without the time reversal 
of the second input variable. In autocorrelation, the signal is 
multiplied with phase shifted copies of itself. The 
implementation begins with zero lag, i.e., the value at each 
instant is squared and added to produce the first 
autocorrelation output. 

The lag value is incremented by one for each next output. 
Hence, in autocorrelation computation the number of 
multiplication (correlation length) needed for each R(i) 
decreases as i increases from 1 to nR-1. Since the given 
assumption is that the number of input is always even, 
correlation length is even for all R(j) where j = 0, 2, 4,....,nR-2 
and it is odd when j = 1, 3, 5,...,nR-1.
  
For each autocorrelation output computation, two pointers to 
input buffer aX1, aX2 are initialized such that aX1 points to 
beginning of input vector and the difference between them is 
equal to the lag value for that output, i.e., aX2 = aX1+lag 
count.

A macro ACorr is used to calculate each autocorrelation 
output. The macro uses packed load and dual MAC to reduce 
the number of cycles for a given correlation length. This brings 
down the loop count for each autocorrelation by a factor of 2. 
For all R(i), i = 0, 2, 4,...., the call to ACorr will directly give the 
autocorrelation result in a 64 bit register which is then 
converted with saturation to 1Q31 format and stored to output 
buffer. In case of R(i) with i = 1, 3, 5,..., the correlation length 
is odd. Hence, one MAC is performed before calling the ACorr 
macro. This makes the implementation optimal for all R(i). 
The loop in the ACorr_16 function runs (nR/2-1) times. During 
each pass through the loop two outputs are calculated and 
written to output buffer (there are two calls to ACorr). The 
implementation works for both odd and even values of nR, 
i.e., nR = 1, 2,...,nX.

ACorr_16 Autocorrelation (cont’d)
User’s Manual 4-386 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Statistical\expACorr_16.c, 
expACorr_16.cpp
Trilib\Example\GreenHills\Statistical\expACorr_16.cpp, 
expACorr_16.c
Trilib\Example\GNU\Statistical\expACorr_16.c

Cycle Count For Macro ACorr

i = 2, 3,...,nX-2

i = 2, 3,...,nX-2

i = nX-1

where Mcall(i) refers to the ith call to the macro

For ACorr_16

a) When nR = any Even value less than nX and greater than 2

Pre-loop : 9

Loop :

Post-loop :

Example : When nX = 54, nR = 4

: Cycle Count = 274 cycles

b) When nR = any Odd value less than nX and greater than 1 

Pre-loop : 9

Loop :

Post-loop :

ACorr_16 Autocorrelation (cont’d)

Mcall 1( ) 1 nX 2+ +=

Mcall i( ) 1 2 nX( ) 2⁄ i imod2–( ) 2⁄–( ) 2+×+=

Mcall i( ) 1 2 nX( ) 2⁄ i imod2–( ) 1⁄–( ) 2+×+=

Mcall i( ) 1 2 nX( ) 2⁄ i imod2–( ) 1⁄–( ) 2+×+=

19 nR 2⁄ 1–( ) Mcall 1( )+× …
Mcall nR 2–( )

+
+

2 2 Mcall nR 1–( ) 14
Mcall nR( ) 6 2

+ + + +
+ +

19 nR 1+( ) 2⁄ 1–( ) ) Mcall 1( )+×
… Mcall nR 1–( )

+
+

2 2 Mcall nR( ) 9 2+ + + +
User’s Manual 4-387 V 1.2, 2000-01



 Function Descriptions
Example : When nX = 54, nR = 5

: Cycle Count = 335 cycles

c) When nR = nX

Pre-loop : 9

Loop :

Post-loop :

Example : When nR = nX = 54

: Cycle Count = 2141 cycles

d) When nR = 1

The OutData loop is bypassed

Cycle Count :

Example : When nX = 54, nR = 1

: Cycle Count = 79 cycles

e) When nR = 2

The OutData loop is bypassed

Cycle Count :

Example : When nX = 54, nR = 2

: Cycle Count = 145 cycles

Code Size 268 bytes

ACorr_16 Autocorrelation (cont’d)

19 nR 2⁄ 1–( ) Mcall 1( )+× …
Mcall nX 2–( )

+
+

2 2 Mcall nX 1–( ) 17 2+ + + +

13 Mcall 1( ) 9 2+ + +

13 Mcall 1( ) 14 Mcall 2( )
6 2
+ + +

+ +
User’s Manual 4-388 V 1.2, 2000-01



 Function Descriptions
Conv_16 Convolution

Signature void Conv_16(DataS  *X,
                       DataS  *H,
                       DataL  *R,            
                       int        nR,
                       int        nH
                       );

Inputs X
H
R
nH
nR

:
:
:
:
:

Pointer to First Input-Vector
Pointer to Second Input-Vector
Pointer to Output-Vector
Size of Second Input-Vector
Size of Output-Vector

Output R(nR) : Output-Vector

Return None  

Description The convolution of two sequences X and Y is done. The input 
vectors are 16-bit and returned output is 32-bit. All the vectors 
are halfword aligned. The length of input vectors is even. 
Therefore for full convolution length output vector length is 
always odd.
User’s Manual 4-389 V 1.2, 2000-01



 Function Descriptions
Pseudo code

{
   frac16 *X;         //Ptr to First Input-Vector
   frac16 *H;         //Ptr to Second Input-Vector
   frac64 acc;        //Convolution result
   int dCnt;          //Convolution loop count

   //Macro
   macro Conv;
   {
      int aOvlpCnt;   //Convolution loop count
      aOvlpCnt = dCnt;//Convolution loop count for current convolution
                      //output

      for(i=0; i<aOvlpCnt; i++)
      {
         acc = acc + (*(X-K)) (*) H(K) + (*(X-K-1)) (*) H(K+1)
                      //acc += X(n) * H(0) + X(n-1) * H(i)
         K = K + 2;
      }
      
      Conv_16:
      {
         int anHCnt;
         int anX_nHCnt;
         int anR_nXCnt; 
         int dCnt = 1;
         int nX_1;

         dnHCnt = nH/2 - 1;
         anHCnt = dnHCnt;
         X1 = X;      //Store Ptr to First Input-Vector
         H1 = H;      //Store Ptr to Second Input-Vector
         *R++ = X[0].H[0]
         acc = 0.0;
         
         Conv;        //Convolution computation
         *R++ = (frac32 sat)acc;
                      //Result stored
         X1 = X1 + 2;
         X = X1;
         H = H1;
   

Conv_16 Convolution (cont’d)
User’s Manual 4-390 V 1.2, 2000-01



 Function Descriptions
         if (nR == 3)
         go to Conv_R_3;
         for (i=0; i<anHCnt; i++)
         {
            acc = 0.0;
            acc = X[n] (*) H[0];
            Conv;     //Convolution computation
            *R++ = (frac16 sat)acc;
                      //Result stored
            dCnt++;
            X = X1;
            H = H1;
            acc = 0.0;
            Conv;     //Convolution computation
            X1 = X1 + 2;
            X = X1;
            H = H1;
            *R++ = (frac32 sat)acc;
         }   
         nX_1 = nR - nH;
         X1 = X1 - 1;
         X = X1;
         anR_nXCnt = dnHCnt;
         if (nX == nH)
         go to Conv_DCntr;

         H = H1;
         anX_nHCnt = nX - nH;
         for (i=0; i<anX_nHCnt; i++)
         {
            X = X1;
            acc = 0.0;
            Conv;     //Convolution computation
            X1 = X1 + 1;
            H = H1;
            *R++ = (frac32 sat)acc;
                      //Result stored
         }
 
                     

Conv_16 Convolution (cont’d)
User’s Manual 4-391 V 1.2, 2000-01



 Function Descriptions
            X = X1;
         for (i=0; i<anR_nXCnt; i++)
         {
            dCnt--;
            H1 = H1 + 1;
            H = H1;
            acc = 0.0;
            acc = X(n) (*) H(0);
            Conv;     //Convolution computation
            *R++ = (frac32 sat)acc;
            X1 = X1 - 1;
            H1 = H1 + 1;
            X = X1;
            H = H1;
            acc = 0.0;
            Conv;     //Convolution computation
            *R++ = (frac32 sat)acc;
            X1 = X1 + 1;
            X = X1;
         }

         Conv_R_3;
            acc = 0.0;
            acc = X(nX - 1) (*) H(nH - 1);
            K++ = (frac32)acc;

         return;
   }
}

Techniques • For optimization implementation is divided into three loops.
First loop where overlap count increases, second loop
overlap count remains same and third loop overlap count
decreases

• A macro Conv is used which calculates convolution output.
The macro uses packed load and dual MAC to reduce the
number of cycles for a given overlap count of two
sequences

• Use of dual MAC and MAC instructions
• Intermediate results stored in 64 bit register (16 guard bits)
• Instruction ordering for zero overhead Load/Store  

Assumptions • Inputs are in 1Q15 format, Output is in 1Q31 format
• nX and nH are even and hence nR is always odd

Conv_16 Convolution (cont’d)
User’s Manual 4-392 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-93 Conv_16

 

Conv_16 Convolution (cont’d)

First Input-Vector Second Input-Vector

aH

H(1)

H(2)

.

.

.

.

H(0)

H(nH-1)

.

X(n-2)

X(n-1)

X(n)

.

.

X(0)

X(nR-nH)

halfword
aligned

halfword
aligned

1Q151Q15 MAC
(odd

overlap
count)

Dual MAC
(even

overlap
count)

aX1

Dual MAC
(odd

overlap
count)

Output-Vector

aR
R(1)

R(2)

.

.

.

.

R(0)

R(nR-1)

1Q31

halfword
aligned
User’s Manual 4-393 V 1.2, 2000-01



 Function Descriptions
Implementation Convolution is same as FIR filtering. For convolution one of 
the two sequences is inverted in time. To implement the 
convolution, the two sequences are multiplied together and 
the products are summed to compute the output sample. To 
calculate next output sample time inverted signal is shifted by 
one and process is repeated. If two sequences of length nX 
and nH are convolved the convolution length is given by nR = 
nX+nH-1. 

The pointer to input vectors, output vector, the size of output 
vector (nR) and size of the input sequence of smaller length 
(nH) are sent as arguments. The size of the other input 
sequence is calculated as (nR-nH+1).

Implementation uses macro Conv. The macro uses two load 
word and one dual MAC instruction. Thus two multiplications 
and one addition is performed per loop according to the 
equation

[4.165]

Thus loop count is always (overlap count/2-2) for even and
odd lengths of overlap count. For odd one more MAC is
performed before the macro is called.

The convolution is divided into three loops.

First loop: The first two convolution outputs are given as 

[4.166]

[4.167]

The number of multiplication and additions required for
computation of R(i) increases as i is increased from 0 to nH-
1. The overlap count of the two input sequences is even for i
= 1, 3, 5,...,nH-1 and odd for i = 0, 2, 4,...,nH-2. Macro is called
for every R(n).

Conv_16 Convolution (cont’d)

acc acc X n( ) H 0( )⋅ X n 1–( ) H 1( )⋅+ +=

R 0( ) X 0( ) H 0( )⋅=

R 1( ) X 1( ) H 0( )⋅ X 0( ) H 1( )⋅+=
User’s Manual 4-394 V 1.2, 2000-01



 Function Descriptions
The first loop is unrolled and first two outputs are calculated
outside the loop. One pass through the first loop gives two
outputs. Thus loop count for first loop is (nH/2-2). This loop
gives first nH outputs.

Second loop: Here the overlap count is always constant and
is nH. Macro Conv is called for (nX-nH) times. This loop gives
next (nX-nH) outputs. 

This loop is skipped if nX = nH.

Third loop: The overlap count decreases from (nH-1) to 1 as i
increases from (nX+1) to (nR-1). The loop is unrolled and last
output which needs only one multiplication is done outside the
loop. Thus loop count for this loop is (nH/2-2). 

Example Trilib\Example\Tasking\Statistical\expConv_16.c, 
expConv_16.cpp
Trilib\Example\GreenHills\Statistical\expConv_16.cpp, 
expConv_16.c
Trilib\Example\GNU\Statistical\expConv_16.c

Cycle Count For i = 1 to nH-1

Mcall(1) and Mcall(2) = 1+2+1

for i = 3, 5,...,(nH-1)

for i = 4,...,(nH-2)

For i = nH to nX-1

for i = nH,nH+1,...,(nX-1)

For i = nX to nR-2

Conv_16 Convolution (cont’d)

Mcall i( ) 1 2 i 1+( ) 2⁄ 2+×+=

Mcall i( ) 1 2 i 2⁄ 2+×+=

Mcall i( ) 1 2 nH 2⁄ 2+×+=
User’s Manual 4-395 V 1.2, 2000-01



 Function Descriptions
for i = nX, nX+2,...,(nR-5)

for i = nX+1, nX+3,...,(nR-4)

Mcall(nR-3) and Mcall(nR-2) = 1+2+1

For nX>nH

14+Mcall(1)

First loop

For nH>4

For nH = 4

Second loop

Third loop

2+2

For nX = nH

Second loop is skipped and first loop will take 2 extra cycles
for jump

For nH = nX =2

16+Mcall(1)+4

Code Size 420 bytes

Conv_16 Convolution (cont’d)

Mcall i )( ) 1 2 nH 2⁄ i 2⁄ nX( ) 2⁄– 1+( )–( ) 2+×+=

Mcall i )( ) 1 2 nH 2⁄ i 1–( ) 2⁄ nX( ) 2⁄– 1+( )–( ) 2+×+=

nH 2⁄ 1–( ) 18 Mcall 2( ) Mcall 3( ) … Mcall nH 1–( )+ + + +[ ]
8+

nH 2⁄ 1–( ) 18 Mcall 2( ) Mcall 3( ) … Mcall nH 1–( )+ + + +[ ]
7+

nX nH–( ) 8 Mcall nH( ) Mcall nH 1+( ) …
Mcall nX 1–( )

+ + + +[
] 3+

nH 2⁄ 1–( ) 19 Mcall nX( ) Mcall nX 1+( ) …
Mcall nR 2–( )

+ + + +[
] 2+
User’s Manual 4-396 V 1.2, 2000-01



 Function Descriptions
Avg_16 Mean Value

Signature DataS Avg_16(DataS *X,
                        int nX
                        );

Inputs X
nX

:
:

Pointer to Input-Buffer
Size of Input-Buffer

Output None

Return R : Mean value of the input values

Description This function calculates the mean of a given array of values. It 
takes pointer to the array and size of the array as input. Input 
range is [-1, 1). The return is the mean value represented using 
32 bits.

Pseudo code

{
   frac32 acc = 0;    //Sum of inputs     
   frac32 one_nX;     //1/no. Of inputs 
   frac64 Ra;         
   frac32 R;          

   for(i=0; i<nx; i++)
   {
      acc = acc + X[i];
                      //acc in 17Q15 format
   }      
   one_nX = 1/nX;     //one_nX in 1Q31 format
   Ra = acc (*) one_nX;
                      //Mean value in 17Q47 format
   R = (frac32)Ra;    //32 bit result in 1Q31 format
   
}
 

Techniques • 32 bit addition is used to provide 16 guard bits for addition        
• Instruction ordering provided for zero overhead Load/Store

Assumptions • Inputs are in the range [-1,1) and in 1Q15 format. Output is
also in 1Q15 format.
User’s Manual 4-397 V 1.2, 2000-01



 Function Descriptions
Memory Note

Figure 4-94 Avg_16

 

Implementation The function takes a short pointer to an array whose mean is 
to be calculated and the size of the array as input. The return 
value is the 32 bit mean value.

[4.168]

Load of inputs and addition are performed in a loop. The input 
values are read into the lower 16 bits of a 32 bit register. 
Hence 32 bit addition is performed on 17Q15 values thereby 
providing 16 guard bits for addition. The reciprocal of the size 
is calculated.
The product of the sum and the reciprocal gives the mean 
value in 17Q47 format. This is converted to 1Q31 and 
returned.

Avg_16 Mean Value (cont’d)

aX

X(1)
.

.

.

.

.

X(0)

X(nX-1)

Input-Buffer

1Q15

mean
x 0( ) x 1( ) … x nx 1–( )+ + +

nx
-----------------------------------------------------------------------=
User’s Manual 4-398 V 1.2, 2000-01



 Function Descriptions
Example Trilib\Example\Tasking\Statistical\expAvg_16.c, 
expAvg_16.cpp
Trilib\Example\GreenHills\Statistical\expAvg_16.cpp, 
expAvg_16.c
Trilib\Example\GNU\Statistical\expAvg_16.c

Cycle Count Pre-loop : 3

Loop :

Post-loop : 27+2

Code Size 54 bytes

Avg_16 Mean Value (cont’d)

nX 2+
User’s Manual 4-399 V 1.2, 2000-01



 Function Descriptions
User’s Manual 4-400 V 1.2, 2000-01



 Applications
5 Applications
The following applications are described.

• Spectrum Analyzer
• Sweep Oscillator
• Equalizer

5.1 Spectrum Analyzer

To perform a spectral analysis of any signal spectrum analyzer is used. The spectrum
analyzer uses radix-2 FFT to get the frequency content of a signal. The FFT algorithm
takes N-data-samples x(n), n=0,1,...,N-1 of the input given and produces N-point
complex frequency samples X(K), K=0,1,...,N-1. The power spectrum is obtained by
squaring the scaled magnitude of complex frequency samples.

  K=0,1,...,N/2 [5.1]

The Power Spectrum Density (PSD) gives a measure of the distribution of the average
power of a signal over frequency. 

The PSD can be actual or averaged. The actual PSD gives N/2 point output from N point
complex FFT output. The averaged PSD gives b band output where the number of bands
is user input.

A simple example showing functioning of Spectrum Analyzer.

The following are the diagrams where input given is a mixture of 4kHz and 12kHz sine
waves sampled at 32kHz. The FIR filter has a cutoff frequency of 8 kHz. So after filtering
the input to FFT contains only 4kHz wave. The power spectrum gives the corresponding
frequency. Here the number of FFT points taken is 512. The maximum frequency value
represented by the spectrum is 16K as sampling frequency is 32K. Since FFT is of 512
complex points it will result in a power spectrum of 256 points. Here 256th doppler bin
represents frequency of 16K. So the frequency corresponding to 64th doppler bin is 4K.

P K( ) 1
N
---- X K( ) 2 1

N
---- Re X K( )2[ ] Im X K( )2[ ]+{ }= =
User’s Manual 5-401 V 1.2, 2000-01



 Applications
Figure 5-1 Input given to Spectrum Analyzer

Figure 5-2 Output of FIR filter
User’s Manual 5-402 V 1.2, 2000-01



 Applications
Figure 5-3 Output power spectrum considering actual PSD

Figure 5-4 20 Band averaged power spectrum
User’s Manual 5-403 V 1.2, 2000-01



 Applications
5.2 Sweep Oscillator

The generation of pure tones is often used for testing DSP systems and to synthesize
waveforms of required frequencies. The basic oscillator is a special case of an IIR filter
where the poles are on the unit circle and the initial conditions are such that the input is
an impulse. If the poles are moved outside the unit circle, the oscillator output will grow
at an exponential rate. If the poles are placed inside the unit circle, the output will decay
toward zero. The state (or history) of the second-order section determines the amplitude
and phase of the future output.

The impulse of a continuous second order oscillator is given by

[5.2]

If d>0 then the output will decay toward zero and the peak will occur at

[5.3]

The peak value will be 

[5.4]

A second order difference can be used to generate an approximation response of this
continuous-time output. The equation for a second-order discrete time oscillators is
based on an IIR filter and is as follows

[5.5]

where, the x input is only present for t=0 as an initial condition to start the oscillator and

[5.6]

[5.7]

where, is the sampling period (1/fs) and is 2 times the oscillator frequency.

The frequency and rate of change of envelope of the oscillator output can be changed
by modifying the values of d and on a sample by sample basis. 

The sweep oscillator implemented here uses the function IirBiq_4_16.

When the oscillator has to be started, the function oscillator is called with one of the
arguments indicating to start new oscillator where impulse is given as an input and the

R t( ) e
dt– ωtsin

ω
--------------=

tpeak
Arc ω d⁄( )tan

ω
----------------------------------=

R tpeak( ) e
dt– peak

d
2 ω2

+
----------------------=

Rn 1+ a1yn a2yn 1– b1xn+–=

a1 2e
dτ– ωτ( )cos=

a2 e
dτ–

=

τ ω π

ω

User’s Manual 5-404 V 1.2, 2000-01



 Applications
delay line gets updated. From the next sample onwards input is made zero, but as the
poles lie on the unit circle the output is oscillatory at given frequency. The coefficients,
whenever there is frequency change, are calculated for that particular frequency.

Following parameters are programmable

• The sampling frequency
• Start frequency
• The factor, by which frequency has to be incremented or decremented
• The number of cycles for a start frequency
• Number of cycles for changed frequency

Figure 5-5 Sweep Oscillator
User’s Manual 5-405 V 1.2, 2000-01



 Applications
5.3 Equalizer

A Graphic Equalizer is a powerful tool to characterize and enhance audio signals.

Technically it is composed of a bank of band-pass filters, each with a fixed center
frequency and a variable gain. This kind of processing unit is called Graphic since the
position of the slider resembles the frequency response of the filters bank. Thus its
usage is extremely intuitive, moving the slider up boosts a selected band, moving it down
will cut it.

Graphic equalizer uses high quality constant Q digital filters. This allows to isolate every
filter section from the effects of the amplitude with respect to the centre frequency and
bandwidth. The result is an accurate control permitting each band not to affect the
adjacent ones.

5-band equalizer implemented uses 128-tap FIR filters to get the desired band pass filter
response. Here the function FirBlk_16 is used for FIR filtering.

The five bands are

•     0 - 170
• 170 - 600
• 600 - 3K
•   3K - 12K
• 12K - 16K

The gain in dB for each band is programmable. Also the common master gain is
programmable. The filters are designed for three sampling frequencies 32kHz, 44.1kHz,
48kHz. The user gives the desired sampling frequency as an input. Depending on this
corresponding filter bank is selected. After input is passed through all the five filters the
output of each filter is multiplied with the gain for that particular band. All the outputs are
added and then finally multiplied with master gain to get the equalizer output.
User’s Manual 5-406 V 1.2, 2000-01



 Applications
Figure 5-6 5 Band Graphic Equalizer

85 600 3K 12K170 16K14K

frequency

-3dB

0dB

7.5K1800385
User’s Manual 5-407 V 1.2, 2000-01



 Applications
5.4 Hardware Setup for Applications

Figure 5-7 Hardware Setup

1. Preparing the TriBoard for Debugging

Connect a parallel cable from the parallel port on the PC to the On Board Wiggler (DB25)
on the TriBoard as shown in Figure 5-7. Connect a “one to one” serial port cable from
the RS232 interface on the PC to the serial interface (RS232-0) on the TriBoard. For
details refer TriBoard manual.

2. Starting a Terminal Program

A terminal program can be used to communicate with the TriBoard via RS232. Both
transmit and receive of data is possible. The TriBoard has an RS232 transceiver on
board to meet the RS232 specification of your PC.

Power supply

Parallel port

Serial port
User’s Manual 5-408 V 1.2, 2000-01



 Applications
3. Power Up the TriBoard

Connect the power supply (6V to 25V DC, power plug with surrounding ground) to the

lower left edge of the card as shown in Figure 5-7. Power up the unit. The green LED’s
next to the OCDS2 Connector indicates the right power status. The red LED near

the reset button indicates the reset status.

Once the connections are done the applications can be run over the TriBoard. The
spectrum analyzer and the equalizer applications can be run by reading the input from
the serial port of TriBoard and calculated output is sent again to serial port of TriBoard. 
User’s Manual 5-409 V 1.2, 2000-01



 Applications
5.4.1 Spectrum Analyzer

Frontend for Spectrum Analyzer:

Figure 5-8 Frontend of Spectrum Analyzer

Figure 5-9 Settings for Spectrum Analyzer
User’s Manual 5-410 V 1.2, 2000-01



 Applications
Figure 5-10 Actual PSD of the input (128 point power spectrum)

Figure 5-11 Averaged PSD of the input (10 bands)
User’s Manual 5-411 V 1.2, 2000-01



 Applications
The inputs taken from the user are

1. Actual band or average band
2. Sampling frequency
3. Cutoff frequency

Actual band gives 128 point power spectrum of the given 1024 input samples. 

Sampling frequency can be one of the three choices 32K, 44.1K, and 48K.

Cutoff frequency can be one of the three choices 4K, 8K, and 16K.

From the host machine, first 1 byte is sent to the serial port of TriBoard to get the above
user inputs. Then acknowledgement is sent to host machine as 1 byte is received. Then
follows the data from the host machine to the TriBoard. 1024, 16 bit data is sent to the
TriBoard. This data is read in a buffer. The FFT of 1024 points input data is calculated.
From the frequency spectrum, power spectrum density is calculated by squaring the
scaled magnitude complex frequency samples. Then 128 point PSD is calculated from
512 point PSD by averaging. If user input is actual PSD, the 128 point PSD is sent to
serial port of TriBoard. If the user input is average input then calculated PSD is divided
into 10 segments and averaged 10 bands are sent to serial port. The host machine reads
the data on the serial port and displays actual or averages spectrum depending on user
input.
User’s Manual 5-412 V 1.2, 2000-01



 Applications
5.4.2 Equalizer

Frontend for Equalizer:

Settings:

Figure 5-12 Frontend of Equalizer
User’s Manual 5-413 V 1.2, 2000-01



 Applications
Figure 5-13 Settings for Equalizer

The inputs taken from the user are

1. Sampling frequency
2. 5 band gains in dB
3. Master gain in dB

Sampling frequency can be one of the three choices 32K, 44.1K and 48K.

Band gains can be from -20dB to +20dB.

Master gain can be from 0 to +50dB.
User’s Manual 5-414 V 1.2, 2000-01



 Applications
From the host machine, first 13 bytes are sent to the serial port of TriBoard to get the
above user inputs. Then a one byte acknowledgement is sent to the host machine. This
is followed by the data from the host machine. 128, 16 bit data is sent to the TriBoard.
This data is read in a buffer. This is band passed through 5 Band pass filters. Each of
the outputs of the filters is multiplied by the respective gain and the final output is
generated by their sum. This is then multiplied by the master gain and sent back to the
host machine. The host machine then sends this data to an output file. 
User’s Manual 5-415 V 1.2, 2000-01



 Applications
User’s Manual 5-416 V 1.2, 2000-01



 References
6 References

1. Digital Signal Processing by Alan V Oppenheim and Ronald W Schafer
2. Digital Signal Processing, A Practical Approach by Emmanuel C Ifeachor and Barrie

W Jervis
3. Discrete-Time Signal Processing by Alan V Oppenheim and Ronald W Schafer
4. Advanced Engineering Mathematics by Erwin Kreyszig
5. K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages,

Applications
6. W. H. Chen, C. H. Smith, and S. C. Fralick, "A fast computational algorithm for the

Discrete Cosine Transform"
User’s Manual 6-417 V 1.2, 2000-01



 References
User’s Manual 6-418 V 1.2, 2000-01



 Frequently Asked Questions
7 Frequently Asked Questions

7.1 FIR Basics

1. What are FIR filters?

FIR filters are one of two primary types of digital filters used in Digital Signal Processing
(DSP) applications (the other type being IIR). FIR means Finite Impulse Response.

2. Why is the impulse response "finite"?

The impulse response is "finite" because there is no feedback in the filter, if an impulse
is given as an input (i.e., a single one sample followed by many zero samples), zeroes
will eventually come out after the one sample has made its way in the delay line past all
the coefficients.

3. What is the alternative to FIR filters?

DSP filters can also be Infinite Impulse Response (IIR). IIR filters use feedback, so when
an impulse is input the output theoretically rings indefinitely.

4. How do FIR filters compare to IIR filters?

Each has advantages and disadvantages. Overall, the advantages of FIR filters
outweigh the disadvantages, so they are used much more than IIRs.

a) What are the advantages of FIR Filters as compared to IIR filters?

Compared to IIR filters, FIR filters have the following advantages.

• They can easily be designed to be "linear phase". Simple linear-phase filters delay the
input signal, but do not distort its phase. 

• They are simple to implement. On most DSP microprocessors, the FIR calculation can
be done by looping a single instruction. 

• They are suited to multi-rate applications. By multi-rate, we mean either decimation
(reducing the sampling rate), interpolation (increasing the sampling rate) or both.
Whether decimating or interpolating, the use of FIR filters allows some of the
calculations to be omitted, thus providing an important computational efficiency. In
contrast, if IIR filters are used, each output must be individually calculated, even if that
output is discarded. (so the feedback will be incorporated into the filter.) 

• They have desirable numeric properties. In practice, all DSP filters must be
implemented using finite-precision arithmetic, i.e., a limited number of bits. The use of
finite-precision arithmetic in IIR filters can cause significant problems due to the use
of feedback, but FIR filters have no feedback, so they can usually be implemented
using fewer bits. 
User’s Manual 7-419 V 1.2, 2000-01



 Frequently Asked Questions
• They can be implemented using fractional arithmetic. Unlike IIR filters, it is always
possible to implement an FIR filter using coefficients with magnitude of less than 1.0.
(The overall gain of the FIR filter can be adjusted at its output, if desired). This is an
important consideration when using fixed-point DSP's, because it makes the
implementation much simpler. 

b) What are the disadvantages of FIR Filters as compared to IIR filters?

FIR filters sometimes have the disadvantage that they require more memory and/or
calculation to achieve a given filter response characteristic. Also, certain responses are
not practical to implement with FIR filters.

5. What terms are used in describing FIR filters?

Impulse Response - The impulse response of an FIR filter is actually just the set of FIR
coefficients. (If an impulse is put into an FIR filter which consists of a one sample
followed by many zero samples, the output of the filter will be the set of coefficients, as
the one sample moves past each coefficient in turn to form the output.) 

Tap - An FIR tap is simply a coefficient/delay pair. The number of FIR taps, (often
designated as N) is an indication of 

• The amount of memory required to implement the filter 
• The number of calculations required
• The amount of filtering the filter can do

In effect, more taps means more stopband attenuation, less ripple, narrower filters, etc.

7.1.1 FIR Properties

Linear Phase

1. What is the association between FIR filters and linear-phase?

Most FIRs are linear-phase filters. When a linear-phase filter is desired an FIR is usually
used.

2. What is a linear phase filter?

Linear Phase refers to the condition where the phase response of the filter is a linear
(straight-line) function of frequency (excluding phase wraps at +/- 180 degrees). This
results in the delay through the filter being the same at all frequencies. Therefore, the
filter does not cause phase distortion or delay distortion. The lack of phase/delay
distortion can be a critical advantage of FIR filters over IIR and analog filters in certain
systems, for example, in digital data modems.
User’s Manual 7-420 V 1.2, 2000-01



 Frequently Asked Questions
3. What is the condition for linear phase?

FIR filters are usually designed to be linear-phase (but they don’t have to be). An FIR
filter is linear-phase if (and only if) its coefficients are symmetrical around the center
coefficient, i.e., the first coefficient is the same as the last, the second is the same as the
next-to-last, etc. (A linear-phase FIR filter having an odd number of coefficients will have
a single coefficient in the center which has no mate.)

4.  What is the delay of a linear-phase FIR?

The formula is simple. Given an FIR filter which has N taps, the delay is

(N - 1) / Fs, where Fs is the sampling frequency. So, for example, a 21 tap linear-phase
FIR filter operating at a 1 kHz rate has delay (21 - 1) / 1 kHz = 20 milliseconds.

Frequency Response

1. What is the Z transform of an FIR filter?

For an N-tap FIR filter with coefficients h(k), whose output is described by

[7.1]

The filter’s Z transform is

[7.2]

2. What is the frequency response formula for an FIR filter?

The variable z in H(z) is a continuous complex variable and can be described as

[7.3]

where,

r is the magnitude and w is the angle of z.

let r = 1, then H(z) around the unit circle becomes the filter’s frequency response H(ejw).
This means that substituting ejw for z in H(z) gives an expression for the filter’s frequency
response H(ejw), which is 

 or [7.4]

Using Euler’s identity, 

[7.5]

y n( ) h 0( ) x n( )⋅ h 1( ) x n 1–( )⋅ h 2( ) x n 2–( )⋅ … h N 1–( ) x n N– 1–( )⋅+ + + +=

H z( ) h 0( )z 0–
h 1( )z 1–

h 2( )z 2– … h N 1–( )z N 1–( )–
+ + + +=

z re
jw

=

H e
jw( ) h 0( )e j0w–

h 1( )e j1w–
h 2( )e j2w– … h N 1–( )e j N 1–( )w–

+ + + +=

e
ja–

a( )cos j a( )sin–=
User’s Manual 7-421 V 1.2, 2000-01



 Frequently Asked Questions
H(w) can be written in rectangular form as

[7.6]

3. How to scale the gain of an FIR filter?

Multiply all coefficients by the scale factor.

Numeric Properties

1. Are FIR filters inherently stable?

Yes, since they have no feedback elements, any bounded input results in a bounded
output.

2. What makes the numerical properties of FIR filters good? 

The key is the lack of feedback. The numeric errors that occur when implementing FIR
filters in computer arithmetic occur separately with each calculation, the FIR does not
remember its past numeric errors. In contrast, the feedback aspect of IIR filters can
cause numeric errors to compound with each calculation, as numeric errors are fed back.
The practical impact of this is that FIRs can generally be implemented using fewer bits
of precision than IIRs. For example, FIRs can usually be implemented with 16-bits, but
IIRs generally require 32-bits, or even more.

6. Why are FIR filters generally preferred over IIR filters in multirate (decimating and
interpolating) systems?

Because only a fraction of the calculations that would be required to implement a
decimating or interpolating FIR in a literal way actually needs to be done.

Since FIR filters do not use feedback, only those outputs which are actually going to be
used have to be calculated. Therefore, in case of decimating FIRs (in which only 1 of N
outputs will be used), the other N-1 outputs do not have to be calculated. Similarly, for
interpolating filters (in which zeroes are inserted between the input samples to raise the
sampling rate) the inserted zeroes need not have to be multiplied with their
corresponding FIR coefficients and sum the result, the multiplication-additions that are
associated with the zeroes are just omitted. (because they don’t change the result
anyway.)

In contrast, since IIR filters use feedback, every input must be used, and every input
must be calculated because all inputs and outputs contribute to the feedback in the filter.

H jw( ) h 0( ) 0w( )cos j 0w( )sin–[ ] h 1( ) 1w( )cos j 1w( )sin–[ ] …+ +=

+ h N 1–( ) N 1–( )w( )cos j N 1–( )w( )sin–[ ]
User’s Manual 7-422 V 1.2, 2000-01



 Frequently Asked Questions
7.1.2 FIR Design

1. What are the methods of designing FIR filters?

The three most popular design methods are (in order):

a) Parks-McClellan: The Parks-McClellan method is probably the most widely used
FIR filter design method. It is an iteration algorithm that accepts filter specifications
in terms of passband and stopband frequencies, passband ripple, and stopband
attenuation. The fact that all the important filter parameters can be directly specified
is what makes this method so popular. The Parks-McClellan method can design not
only FIR filters but also FIR differentiators and FIR Hilbert transformers.

b) Windowing: In the windowing method, an initial impulse response is derived by
taking the Inverse Discrete Fourier Transform (IDFT) of the desired frequency
response. Then, the impulse response is refined by applying a data window to it. 

c) Direct Calculation: The impulse responses of certain types of FIR filters (e.g.
Raised Cosine and Windowed Sine) can be calculated directly from formulae. 
User’s Manual 7-423 V 1.2, 2000-01



 Frequently Asked Questions
7.2 IIR Basics

1. What are IIR filters?

IIR filters are one of two primary types of digital filters used in Digital Signal Processing

(DSP) applications (the other type being FIR). IIR means Infinite Impulse Response.

2. Why is the impulse response "infinite"?

The impulse response is "infinite" because there is feedback in the filter, if an impulse is
given as an input (a single 1 sample followed by many 0 samples), an infinite number of
non-zero values will come out (theoretically).

3. What is the alternative to IIR filters?

DSP filters can also be Finite Impulse Response (FIR). FIR filters do not use feedback.

So, for an FIR filter with N coefficients, the output always becomes zero after putting in N

samples of an impulse response.

4. What are the advantages of IIR filters as compared to FIR filters?

IIR filters can achieve a given filtering characteristic using less memory and fewer
calculations than a similar FIR filter.

5. What are the disadvantages of IIR filters as compared to FIR filters? 
• They are more susceptible to problems of finite-length arithmetic, such as noise

generated by calculations and limit cycles. (This is a direct consequence of
feedback, when the output is not computed perfectly and is fed back, the imperfection
can compound.) 

• They are harder (slower) to implement using fixed-point arithmetic. 
• They do not offer the computational advantages of FIR filters for multirate

(decimation and interpolation) applications. 
User’s Manual 7-424 V 1.2, 2000-01



 Frequently Asked Questions
7.3 FFT 

The Fast Fourier Transform is one of the most important topics in Digital Signal
Processing but it is a confusing subject which frequently raises questions. Here, we
answer Frequently Asked Questions (FAQs) about the FFT. 

7.3.1 FFT Basics

1. What is FFT?

The Fast Fourier Transform (FFT) is a fast (computationally efficient) way to calculate
the Discrete Fourier Transform (DFT).

2. How does the FFT work?

By making use of periodicities in the sines that are multiplied to do the transforms, the
FFT greatly reduces the amount of calculation required. 

Functionally, the FFT decomposes the set of data to be transformed into a series of
smaller data sets to be transformed. Then, it decomposes those smaller sets into even
smaller sets. At each stage of processing, the results of the previous stage are combined
in special way. Finally, it calculates the DFT of each small data set. For example, an FFT
of size 32 is broken into 2 FFTs of size 16, which are broken into 4 FFTs of size 8,
which are broken into 8 FFTs of size 4, which are broken into 16 FFTs of size 2.
Calculating a DFT of size 2 is trivial. 

This can be explained as follows. It is possible to take the DFT of the first N/2 points and
combine them in a special way with the DFT of the second N/2 points to produce a single
N-point DFT. Each of these N/2-point DFTs can be calculated using smaller DFTs in the
same way. One (radix-2) FFT begins, therefore, by calculating N/2 2-point DFTs. These
are combined to form N/4 4-point DFTs. The next stage produces N/8 8-point DFTs and
so on, until a single N-point DFT is produced.

3. How efficient is the FFT?

The DFT takes N2 operations for N points. Since at any stage the computation required
to combine smaller DFTs into larger DFTs is proportional to N and there are log2(N)
stages (for radix-2), the total computation is proportional to N * log2(N). Therefore, the
ratio between a DFT computation and an FFT computation for the same N is
proportional to N / log2(n). In cases where N is small this ratio is not very significant, but
when N becomes large, this ratio gets very large. (Every time N is doubled, the
numerator doubles, but the denominator only increases by 1.)

4. Are FFTs limited to sizes that are powers of 2?
User’s Manual 7-425 V 1.2, 2000-01



 Frequently Asked Questions
No. The most common and familiar FFTs are radix-2. However, other radices are
sometimes used, which are usually small numbers less than 10. For example, radix-4 is
especially attractive because the twiddle factors are all 1, -1, j or -j, which can be
applied without any multiplications at all. 

Also, mixed radix FFTs can be done on composite sizes. In this case, you break a non-
prime size down into its prime factors and do an FFT whose stages use those factors.
For example, an FFT of size 1000 might be done in six stages using radices of 2 and 5,
since 1000 = 2 * 2 * 2 * 5 * 5 * 5. It can also be done in three stages using radix-10, since
1000 = 10 * 10 * 10. 

5. Can FFTs be done on prime sizes?

Yes, although these are less efficient than single-radix or mixed-radix FFTs. It is almost
always possible to avoid using prime sizes.

7.3.2 FFT Terminology

1. What is an FFT radix?

The radix is the size of an FFT decomposition. For single-radix FFTs, the transform size
must be a power of the radix. 

2. What are twiddle factors?

Twiddle factors are the coefficients used to combine results from a previous stage to
form inputs to the next stage.

3. What is an "in place" FFT?

An "in place" FFT is an FFT that is calculated entirely inside its original sample
memory. In other words, calculating an "in place" FFT does not require additional buffer
memory. (as some FFTs do.)

4. What is bit reversal?

Bit reversal is just what it sounds like, reversing the bits in a binary word from left to
right. Therefore the MSB’s become LSB’s and the LSB’s become MSB’s. The data
ordering required by radix-2 FFTs turns out to be in bit reversed order, so bit-reversed
indices are used to combine FFT stages. It is possible (but slow) to calculate these bit-
reversed indices in software. However, bit reversals are trivial when implemented in
hardware. Therefore, almost all DSP processors include a hardware bit-reversal
indexing capability. (which is one of the things that distinguishes them from other
microprocessors.)
User’s Manual 7-426 V 1.2, 2000-01



 Frequently Asked Questions
5. What is decimation in time versus decimation in frequency?

FFTs can be decomposed using DFTs of even and odd points, which is called a
Decimation-In-Time (DIT) FFT or they can be decomposed using a first-half/second-half
approach, which is called a Decimation-In-Frequency (DIF) FFT.
User’s Manual 7-427 V 1.2, 2000-01



 Frequently Asked Questions
User’s Manual 7-428 V 1.2, 2000-01



 Appendix
8 Appendix

Convention Document for TriLib

8.1 Introduction

8.1.1 Scope of the Document

This document describes the Programming Conventions for the TriCore DSP Library. 

The purpose of the document is to bring out a unified programming style for the TriCore
DSP. It is recommended that the guidelines and the conventions be observed to
organize each DSP application software. This ensures uniform and well-structured code.
User’s Manual 8-429 V 1.2, 2000-01



 Appendix
8.2 File Organization

8.2.1 File Extensions

The Software application, TriLib should be organized as a collection of modules or files
that belongs to any one of the following categories. The following table brings out the
details of the different categories of files.

Table 8-1 Directory Structure

Type Extension Description

’C’ Source files *.c C Language Source files

Include files *.h, *.inc The include files for the ’C’ and the assembly 
functions. The C include files generally have *.h as 
extension. Assembly can have different extensions 
based on the compiler in use. All the include files 
should define the global constants and variable 
types, if any. They should not allocate memory or 
define functions as this prevents them from being 
included by multiple source files. All subroutines 
which form part of the overall interface to a source 
file should be declared in include file. This provides 
a convenient overview of the interface and allows 
the compiler or assembler to check for errors

Testvector files *.dat These files should only contain data to be used for 
test purposes or algorithmic usage. There must not 
be any code in these data files. These files, if used, 
will probably be included or copied (.include 
directive) in other source files or assembled as 
stand-alone modules. These files can also be given 
as the command line argument for the example 
programs depending upon the implementation

Build files *.pjt, *.bld, *.out It is strongly recommended that a project make file
is maintained that checks for any out-of-date target
files and builds them automatically. Different
compilers use different extension for the build files. 

TriCore 
Source files

*.asm, *.tri, *.S Different compilers use different extensions for the
assembly source files. Generally *.asm file is widely
accepted by many compilers. 
User’s Manual 8-430 V 1.2, 2000-01



 Appendix
8.2.2 File Naming Conventions

The Files will be named using the following convention. This helps in easy identification
of the file. 

• All the Source files of TriCore assembly will have *.asm, *.tri or *.S extension
depending upon the compiler being used. The name can be formulated by using the
following convention.

8.2.3 File Header and Guidelines

The following is the format of the file header.

//**********************************************************************************************

The suffix has to be numeric that gives the
information such as data size (16 or 32 bits)
of input in case of arithmetic operations, or
constraint on the order of Filters, say multiple
of four (this is optional and can be used
wherever applicable). When order and bit
information are required, the suffix info is
exploded as <order>_<no.bits>

<Function class Operation name>_<Suffix info>.asm/(.tri)/(.S)

Abbreviated function name approximately in multiples of three
letters for each concept or words.
a.  The initial three letters will be the class of the functions such as
     Finite Impulse Response filters and can be represented as ’Fir’
b.  The  next three letters will be operation name such as for block
     operation it can be represented as ’Blk’ or for Maximum Index
     as ’MaxIdx’
User’s Manual 8-431 V 1.2, 2000-01



 Appendix
Notes

• The names in the fields - module, file name etc., should match exactly with the existing
name of the file and the module. Consistency should be maintained in all the fields
wherever there are multiple references.

• The description should provide the information about the implementation in the file
and the global issues, if any.

// @Module: Name of the function or module (e.g., main())

// @Filename: Name of the file with extension (e.g., expFir_4_16.c)

// @Project:
Name of the Project (DSP Library for Tricore V1.2,
V1.3)

// @Controller: Name of the controller (TriCore V1.2, V1.3)

// @Compiler: Compiler name (Tasking or GHS or GNU)

// @Version: Version of the S/W

// @Description: The description of the file

// @See Also: List the include files used

// @References: List the reference documents /manuals 

// @Caveats: Caveats if any

// @Date:
Date (only in this format dd mm yy e.g., 14th Jan 
2000)

// @History: Revision history or the modification details

//-------------------------------------------------------------------------------------------------------------
User’s Manual 8-432 V 1.2, 2000-01



 Appendix
8.3 Coding Rules and Conventions for ’C’ and ’C++’

This section describes the coding rules and conventions for C/C++ languages.

8.3.1 File Organization

• It is recommended to have one functional module in one file. This can be relaxed when
the functional module is very small and does not justify having a separate file. 

• Tab size is always set to four white spaces.

8.3.2 Function Declaration

The general recommendations and rules for the function declaration are as follows.

• Declaration of all global interface functions should be done in a header file, which
should be made available to the external programs. 

• All local functions should be declared in the respective C files that makes use of them.
This should not be visible outside.

• All functions, arguments, and variables must be explicitly declared. If a function does
not return a value, then the return type should be void.

• Function definition should never be put in a .h header file unless it is an inline function
this is applicable only for C++.

• Declare all external functions in a .h header file. 
• Do not #include .c files. 
• Any module that needs to provide extern variables must provide a header file that

declares them. Other modules that need to reference the extern variable should
include that header file.

• All global variables should be declared as extern in the common header file. This
avoids the multiple declaration if included in multiple files.

Function definition should have the following syntax.

<return_type> <func_name>(<data_type><param1>, /* comments */
                          <data_type><param2>, /* comments */
                          ...
                          ...
                          <data_type><paramn>) /* comments */
{
      /*********Declaration of local variables ********/

      /***** Description about the body below**********/
      /**** Body *****/
      ....
      ....
      ....
      /***** Start of loop *****/
User’s Manual 8-433 V 1.2, 2000-01



 Appendix
      {
      } /***** Mark end of loop here *****/
      /*****Mark end of body here ******/
}/* Mark end of function here with the <func_name> ***/

8.3.3 Variable Declaration

The general recommendations and rules for the variable declaration is as follows.

• All global variables should be defined in a .c file and not in a .h file. In the .h header
file, it should be declared as extern.

• If different types of variables are declared in a file, there should be a clear demarcation
between the global variables for the project and the global variables for a file. 

• Declare the class of variables in groups with a general comment. Determination of the
class can be done on basis of usage, locality, etc.

• Local variables should be declared only at the beginning of the function for greater
visibility. 

Example:

void func_name()
{
   int x;
   /****** body of the function*****/

   int y; /* improper - never declare a variable inside the body of the
             function */
   /******end of the body***********/
}

• Never mix the index variables or pointer variables with that of the other local variables
in the declaration.

Example:

int i, temp_32, *pTable;   /* Improper */
int i;                     /* Correct */
int *pTable;               /* Correct */
int temp_32;               /* Correct */

• Declare and use the variables as per the naming convention that is formalized for
each of the projects. 

• For pointer variable declaration, use the '*' sign near to the variable name and in case
of multiple pointer declaration, use the '*' sign separately for each of the variables.
User’s Manual 8-434 V 1.2, 2000-01



 Appendix
• Never initialize the pointer in the same line where it is declared, do it explicitly to
increase the visibility.

8.3.4 Comments

• Comments should be written at the beginning of the body of the function to describe
its activity.

• Comments and code should not cross the 79th column of the line. In case there is a
need to further comment, use the next line and start in the same column it was started
in previous line.

• Comments should be to the point. 
• Comments should be avoided where the code itself is sufficient to understand the flow

of the program.
• Comments are mandatory at the beginning of the new block. It should explain the

purpose and the operation of that block.
• Arithmetic and logical operations can be represented by means of symbols in the

comments to make it short and increase the readability.
User’s Manual 8-435 V 1.2, 2000-01



 Appendix
8.4 Coding Rules and Conventions for Assembly Language

This section describes the coding rules and conventions for the Assembly language.

8.4.1 File Organization 

• It is recommended to have one functional module in one file. This can be relaxed when
the functional module is very small and does not justify having a separate file. 

• Tab size is always set to four white spaces.

8.4.2 General Coding Guidelines

The following describes the order of declaration and syntax for the same in the assembly
language programs.

• Include syntax should start from the 1st column since some assemblers does not
accept if it is other than 1st column.

Example:

; -------- Section for all include header files --------------
.include file.h

• All include files should have a preprocessor directive at the beginning.

Example:

#ifndef _TriLib_h
#define _TriLib_h
....
....
#endif // end of _TriLib_h include file

• Describe the external references

Example:

; -------- Section for external references -------------------
.global   _mpy32      ;here _mpy32 is the global label that 
                      ;can be referenced in other files by using extern
.extern   _mpy32      ;used to refer the global labels.
; -------- Section for constants -----------------------------
Pi            .set    3.14
Localvarsize  .set    1
User’s Manual 8-436 V 1.2, 2000-01



 Appendix
Note: .equ directive can also be used here but .set can be used if one needs to
change the value at a later point in the program.

• Constant definitions for the pointer offsets 

Example for Tasking Compiler:

.define    W16   ’2’     ;Two bytes offset

.define    W32   ’4’     ;Four bytes offset

.define    W64   ’8’     ;Eight bytes offset

Example for GHS Compiler:

#define    W16   2       ;Two bytes offset
#define    W32   4       ;Four bytes offset
#define    W64   8       ;Eight bytes offset

Example for GNU Compiler:

.equ       W16   2       ;Two bytes offset

.equ       W32   4       ;Four bytes offset

.equ       W64   8       ;Eight bytes offset

• Use the freely available registers for local variables and document the same.
Otherwise, use the macros which will set aside a frame for the required size by
decrementing the stack. 

Example:

FEnter  5                 ;will decrement the stack by 5 words

(FEnter is the macro that subtracts the stack pointer by the required number which is
passed as the argument)

• Labels must be written in the same convention as that of the function naming
convention and should start from the 1st column. It is recommended that all labels
should have some prefix that relates it to the function it belongs. This helps to avoid
duplicate label names in different files.  

For instance, all labels in an assembly function named Function1 could begin with the
prefix F1_. A label should end with a colon character. 
User’s Manual 8-437 V 1.2, 2000-01



 Appendix
Example:

In case of a Finite Impulse Response filter, a label can be written as FirS4_TapL: for tap
loop of FIR on sample, coefficient multiple of 4. This helps to identify a label from
mnemonics and other assembler directives. 

• All instruction mnemonics must be written in lower-case letters. Instruction
mnemonics must begin from the 5th column of each line. All operands must start from
the 17th column. Most text editors can be configured to position tabs to any column
number. In case of multiple operands, they should be separated with a comma. 

• When writing a complex assembly language function, it is sometimes difficult to keep
track of the contents of registers. Use of symbolic names to replace registers can
improve readability of code. It is recommended that .define or #define assembler
directives be used depending upon the compiler used to substitute registers with
appropriate symbolic names. Since a register may be used for more than one purpose
during the execution of a program, more than one symbolic name can be equated to
one register. Note that all symbols replacing registers should be in the convention as
described in the section 7.4.4, as shown in the following example.

Example for Tasking compiler: 

.define    caeDLY     "a12"     ;Even-Reg of Circ-Ptr

.define    caoDLY     "a13"     ;Odd-Reg of Circ-Ptr

.define    aTapLoops  "a14"     ;Number of taps

Another advantage of using symbolic names to identify registers is maintainability of the
code. By using symbolic names for registers, it becomes easier to change register
assignments later. For example, if a function uses A1 as an input parameter pointing to
an array but the calling function prefers using A2 for that purpose, the .define directive
in the called function can be modified to equate the input array symbol with A2 instead
of A1. If a symbol had not been equated to A1 in the called function, it would have
required a search-and-replace operation to find all occurrences of A1 and replace them
with A2. Symbolic names should be used whenever it is possible.

• Comments can either begin from the 37th column or from the 1st column if the entire
line is required for lengthy comments at the beginning of the block. This rule is for
general instruction wise commenting only. In case of block or program commenting,
which is trying to explain about the overall function/algorithm, it can start from 1st

column. Remember the commenting is inclusive of the semicolon also. Comments
should be avoided between parallel instructions. The commenting conventions are
described in the later section.
User’s Manual 8-438 V 1.2, 2000-01



 Appendix
Example:

8.4.3 Function Organization

The general function organization is as follows. Changes can be made to suit the
requirements.

Function_name_label

----------Prolog of fn starts here--------
SP = SP + Locvarsize     ;Allocate local variables in stack

----------End of prolog-------------------

Body of function......

----------Epilog starts here--------------

SP=SP-Locvarsize         ;Deallocate local variables 
                         ;in stack

----------End of epilog-------------------

RETURN

5th Column

Ld.da caDLY,[aDLY]

17th Column

Fir_b:

1st Column 37th Column

;Load the Circ-Ptr of
;Delay-Buffer to reg
;pair caDLY

; This long comment refers to the next group of instructions.
; for readability, this sentence begins from the fourth column.

1st Column
User’s Manual 8-439 V 1.2, 2000-01



 Appendix
• If there is a reference code or pseudocode, use the same variable names for easy
debugging and maintenance.

• Loop start and end should be commented for easy identification.

;--------------------------loop start----------------------------
         Body of loop
;--------------------------loop end------------------------------

8.4.4 Variables and Argument Convention

The variables should have following conventions.

Example:

;Registers used for storing input Data Registers (Tasking)
.define   ssXa     "d10"     ;D10-Register holds 2 inputs
.define   ssXb     "d11"     ;D11-Register holds 2 inputs
.define   ssssXab  "d10"     ;E10-Register holds 4 inputs
.define   aVec1    "d11"     ;A1 is the address register
.define   nCnt     "a5"      ;A5 used as loop counter
.define   caH      "a6"      ;A6 is the pointer to circular 

Prefix Variables

s Short (16 bit value)

ss Two short values in a 32 bit register

ssss Four short values in a 64 bit register

l Long (32 bit) in a 32 bit register

ll Two long in a 64 bit register

a Address register or data type prefix

dTmp Temporary data register

n Loop count data register

ca Circular buffer address register pair

aa Pointer to pointer

o Odd register

e Even register
User’s Manual 8-440 V 1.2, 2000-01



 Appendix
                             ;buffer address pointer
                             

• Define a temporary register of two short values

Example:

.define   dTmp     "d4"      ;Generic temp-data-reg

• Define the lower half or the upper half of the registers explicitly for GHS and GNU
compilers whereas for Tasking it is not needed.

Example for the incorrect implementation:

.define   lKa      "d8"      ;d8-Register 

.define   lKa_UL   "D8ul"        ;

maddm.h   Acc,Acc,drXb,lKa_UL,1

Example for the correct implementation:

.define   ssKa     "d8"      ;d8-Register holds 

maddm.h   Acc,Acc,ssXb,ssKa ul,#1

• Use a consistent notation. Always use the symbolic name that is defined. Do not mix
the symbolic names with the register names.

Example for the incorrect implementation:

.define   caCoef   "a6/a7"       ;A6/A7-Circ-buf 

ld.da       caDelay,[A7]         ;Use absolute
                                 ;register name
ld.w        lKb,[caCoef+c]2*w16  ;Use define

If the defines are changed then the absolute names will not match. Also the probability
of making errors is high, and the code is not readable. In case of defines that use a
register pair (e.g. caH), additional defines can be used for individual odd and even
registers. 
User’s Manual 8-441 V 1.2, 2000-01



 Appendix
8.4.5 Function Header and Guidelines

The format of the function header is as follows.

;**********************************************************************

;  Return_Value Function_Name ( Arg1,
                            Arg2,
                            ……..
                            ……..
                            Arg N);

; INPUTS: Input parameters 

; OUTPUTS: Output parameters

; RETURN: Return value and type and its significance

; DESCRIPTION: Describe the function if relevant give the formula,
C code, Error conditions, etc. 

; ALGORITHM: Algorithm of the implementation in simple english or
in the pseudo C syntax equations etc.                         

; TECHNIQUES: List the different techniques of optimization used in
the implementation

; ASSUMPTIONS: List the assumptions made

; MEMORY NOTE: Table to depict the variables and the its type, name,
alignment, etc.

; REGISTER USAGE: List of registers used in this function

; CYCLE COUNTS: Profiled result in terms of number of cycles

; CODE SIZE: Size in terms of words of memory

; DATE: Date

; VERSION: Version of the function

;**********************************************************************************************
User’s Manual 8-442 V 1.2, 2000-01



 Appendix
Notes

• The signature of the function should be same as what is declared as the function
prototype.

• The input/output parameters are passed to the function as arguments. Sometimes the
input parameters can also act as the output parameters, such as a pointer variable
getting used and updated inside the function. This information should be explained in
this field. This field should have information about the type of parameter, its normal
value or range of values and it's significance.

• Return values should not be mixed with the output parameters. Sometimes return
values are themselves the output values of the function. In DSPLIB implementation,
the return values are generally void in many cases as the output will be in form of an
array, etc. The return value should give information about the type, range of values
and its significance.

• The description field should contain the required description of the function, without
any redundant information. It should contain equations wherever applicable. The
purpose of the description is to give a good overview of the function and the
methodology of implementation. It should also contain information on the
implementation with right justification for a specific method, which is followed in the
implementation. Alternative methodologies can also be discussed which are optional.
Error conditions should be discussed wherever applicable.

• Any assumptions that are made in the implementation such as bits of precision, range
of values etc., should be mentioned under assumptions. The assumption should deal
only with the implicit requirements of the function. Any direct given data or the
requirements should not be listed in the assumptions list.
User’s Manual 8-443 V 1.2, 2000-01



 Appendix
8.5 Testing

8.5.1 Test Methodology

• Testing of the DSP library is done using the test vectors that are developed internally.
• The reference 'C' code is developed and reviewed critically.
• For few codes the input test vectors (test cases) are used to generate the reference

output test vectors using the reference 'C' code.
• The module under test will be tested using the test vector. The output of the module

will be cross-examined for correctness with the reference output test vectors. This is
test for the PASS/FAIL criterion. 

• For all the codes the input test vectors are given in the example main of the function.
Same test case can be given to test code and outputs of both can be verified.

8.5.2 Convention

Refer Test Design Specification: INF_DSP.1.0.TD.1.0 dated March 01, 2000.
User’s Manual 8-444 V 1.2, 2000-01



 Appendix
8.6 Compiler Support

8.6.1 General Common System

The TriLib implementation is designed for multiple compilers. TriCore processor is
supported by three compilers at present namely,

• Tasking
• GHS
• GNU

TriLib should be implemented with and without language extensions. It is intended not to
have any changes in the organization of the code to support the different compilers.
Since the implementation of each of the compilers varies from one another, it is expected
that the implementation of the TriLib cannot be uniform across the compilers. 

The following sections will bring in the details of how to support the TriLib in Tasking,
GHS and the GNU compilers. The main idea of this is to bring in the aspects of portability
and extensibility across different platforms.

8.6.2 Distinguishing Tasking, GHS and GNU Specific Directives

Tasking compiler, GHS and GNU have a specific set of assembler directives, refer the
individual documentation for more details. 

Principally, all the compilers have some directive which are same by syntax and usage
perspective. There are also some equivalent directives whose syntax differs. Finally
there are some distinctive sets of directives, which are specific to each of the compilers. 

Refer individual documentation for more details on the language extensions part of each
of the compilers.

8.6.3 Note on Implementation on Different Compilers

Table 8-2 Equal Directives

Tasking Compiler GHS Compiler GNU Compiler

.align .align .align

.byte .byte .byte

.word .word .word

.double .double .double

.float .float .float
User’s Manual 8-445 V 1.2, 2000-01



 Appendix
.space .space .space

.set .set .set

.extern .extern .extern

.include .include .include

.macro .macro .macro

.endm .endm .endm

.exitm .exitm .exitm

.if .if .if

.else .else .else

.endif .endif .endif

Table 8-3 Directives with the same functionality but different syntax

Tasking Compiler GHS Compiler GNU Compiler

.define #define  #define 

.global .globl .global/.globl

.sect ".text" .text .text

.sect ".data" .data .data

.half .hword .hword

Table 8-4 Datatypes with DSPEXT

Tasking Compiler GHS Compiler GNU Compiler

_sfract fract16 Not applicable

_fract fract32 Not applicable

_sfract_circ circptr<frac16> Not applicable

_fract_circ circptr<frac32> Not applicable

Table 8-2 Equal Directives
User’s Manual 8-446 V 1.2, 2000-01



 Appendix
Datatypes without DSPEXT are same for all compilers. They are as shown

struct
{
   _sfract imag;
   _sfract real;
} CplxS;

struct
{
   frac16 imag;
   frac16 real;
} CplxS;

Not applicable

struct
{
   _fract imag;
   _fract real;
} CplxL;

struct
{
   frac32 imag;
   frac32 real;
} CplxL;

Not applicable

Table 8-5 Datatypes without DSPEXT

Data Size Data Type

16-bit short

32-bit int

Circular buffer structure 16-bit struct
{
   short *base;
   short index;
   short base;
} CptrDataS   

Circular buffer structure 32-bit struct
{
   int *base;
   short index;
   short base;
} CptrDataL

Complex 16-bit {
   short imag;
   short real;
} CplxS

Complex 32-bit {
   int imag;
   int real;
} CplxL

Table 8-4 Datatypes with DSPEXT
User’s Manual 8-447 V 1.2, 2000-01



 Appendix
The instructions which need to be changed for porting.

1. Instructions using address register pair: In case of instruction using address
register pair for GNU one need to specify even address register of the register pair.

Example for Tasking Compiler:

ld.da caDLY,[aDLY]0

Example for GHS Compiler:

ld.da caDLY,[aDLY]0

Example for GNU Compiler:

ld.da caeDLY,[aDLY]0

2. Definition of data register pair: It should be as shown below.

Example for Tasking Compiler:

.define  llAcc  "d12/d13" or

.define  llAcc  "e12"

Example for GHS Compiler:

#define  llAcc  "d12/d13 or

#define  llAcc  e12

Example for GNU Compiler:

#define  llAcc  %e12

3. Instructions using packed multiply-add: For instructions using packed multiply-add
where lower or upper 16-bits of registers have to be specified, in case of GHS and
GNU those registers need to be explicitly defined.

Example for Tasking Compiler:

maddm llAcc, llAcc, ssex, ssOH ul, #1

In case of GHS the ssOH_ul need to be defined as 

#define ssOH d9

#define ssoH_ul d9ul
User’s Manual 8-448 V 1.2, 2000-01



 Appendix
Example for GHS Compiler:

maddm llAcc, llAcc, ssex, ssOH_ul, 1

In case of GNU the ssOH_ul need to be defined as

#define ssOH %d9

#define ssoH_ul %d9ul

Example for GNU Compiler:

maddm llAcc, llAcc, ssex, ssOH_ul, 1

4. Arithmetic Instruction using same source and destination register: Any
arithmetic instruction where source and destination registers are same GHS needs to
explicitly specify registers but it works on Tasking.

Example for Tasking Compiler:

add dTmp, #1 or

add dTmp, dTmp, #1

Example for GHS Compiler:

add dTmp, dTmp, 1

Example for GNU Compiler:

add dTmp, dTmp, 1

5. Reading data from the data section: While reading data from the data section of the
code the label of data section should be preceded by %sdaoff in case of GHS

Example for Tasking Compiler:

lea aH, CoeffTab

Example for GHS Compiler:

lea aH, %sdaoff(CoeffTab)

Example for GNU Compiler:

lea aH, CoeffTab
User’s Manual 8-449 V 1.2, 2000-01



 Appendix
6. Macro definition:

Example for Tasking Compiler:

macro_name .macro

Example for GHS Compiler:

.macro macro_name

Example for GNU Compiler:

.macro macro_name

7. The arguments sent to macro:

For Tasking and GHS they will be used as it is where as in case of GNU it is preceded
by \ in the code of macro.

Example for Tasking Compiler:

FirDec .macro Ev_Coef,Ev_Coef_Od_Df

.if Ev_Coef == TRUE

sh    dTmp1, dTmp1, #-1    ;>>1 2Taps/loop

Example for GHS Compiler:

.macro FirDec Ev_Coef,Ev_Coef_Od_Df

.if Ev_Coef == TRUE

sh    dTmp1, dTmp1, -1     ;>>1 2Taps/loop

Example for GNU Compiler:

.macro FirDec Ev_Coef,Ev_Coef_Od_Df

.if \Ev_Coef == TRUE

sh    dTmp1, dTmp1, -1     //>>1 2Taps/loop

8. Loop within macro:

For Tasking the label for loop within macro should always have first character as ^ , e.g.
^conv_conL where as for GHS label need to be a number and where the loop
instruction encounters the label should be that number with a letter b as it is a backward
jump. For forward jump it should be f.
User’s Manual 8-450 V 1.2, 2000-01



 Appendix
Example:

For Tasking: ^conv_conL :

                       .

                       .

                       loop aloopcount, ^conv_conL

For GHS:  1:

          .

          .

          loop aloopcount, 1b

For GNU:  1:

          .

          .

          loop aloopcount, 1b

9. cmov instruction: Instruction cmovn does not work for GHS ver 2.0 it has to be
replaced by seln.

Example for Tasking Compiler:

cmovn loAcc, dTmp2, dTmp1

Example for GHS Compiler:

seln loAcc, dTmp2, dTmp1, loAcc

Example for GNU Compiler:

seln loAcc, dTmp2, dTmp1, loAcc

10. Jump Instruction: Jump instruction syntax is different across these compilers.

Example for Tasking Compiler:

jnz.t  dTmp:0, label

Example for GHS Compiler:

jnz.t  dTmp,0, label
User’s Manual 8-451 V 1.2, 2000-01



 Appendix
Example for GNU Compiler:

jnz.t  dTmp,0, label

Note:

The instruction jz works only for the GreenHills V2.0.2. For old versions of GreenHills this
instruction is not supported.
User’s Manual 8-452 V 1.2, 2000-01



 Glossary
9 Glossary 

A

Acquisition Time The time required for a sample-and-hold (S/H) circuit to capture 
an input analog value. Specifically, the time for the S/H output 
to approximately equal its input. 

Adaptive Delta 
Modulation (ADM)

A variation of delta modulation in which the step size may vary 
from sample to sample. 

ADC (or A/D, 
Analog-to-Digital 
Converter)

The electronic component which converts the instantaneous 
value of an analog input signal to a digital word (represented as 
a binary number) for Digital Signal Processing. The ADC is the 
first link in the digital chain of signal processing. 

ADPCM (Adaptive 
Differential Pulse 
Code Modulation)

A very fast data compression algorithm based on the 
differences occurring between two samples. 

Algorithm A structured set of instructions and operations tailored to 
accomplish a signal processing task. For example, a Fast 
Fourier Transform (FFT), or a Finite Impulse Response (FIR) 
filter are common DSP algorithms. 

Aliasing The problem of unwanted frequencies created when sampling 
a signal of a frequency higher than half the sampling rate.

All-Pass Filter A filter that provides only phase shift or phase delay without 
appreciable changing the magnitude characteristic. 

Amplitude 1. Greatness of size, magnitude.
2. Physics. The maximum absolute value of a periodically

varying quantity.
3. Mathematics.

a) The maximum absolute value of a periodic curve
measured along its vertical axis.

b) The angle made with the positive horizontal axis by the
vector representation of a complex number.

4. Electronics. The maximum absolute value reached by a
voltage or current waveform. 
User’s Manual 9-453 V 1.2, 2000-01



 Glossary
Analog A real world physical quantity or data, characterized by being 
continuously variable (rather than making discrete jumps),
and can be as precise as the available measuring technique. 

ANSI (American 
National 
Standards 
Institute)

A private organization that develops and publishes standards 
for voluntary use in the U.S.A. 

Anti-Aliasing Filter A low-pass filter used at the input of digital audio converters to 
attenuate frequencies above the half-sampling frequency to 
prevent aliasing. 

Anti-Imaging Filter A low-pass filter used at the output of digital audio converters 
to attenuate frequencies above the half-sampling frequency to 
eliminate image spectra present at multiples of the sampling 
frequency. 

ASCII 
(pronounced "ask-
ee") (American 
Standard Code for 
Information 
Interchange)

An ANSI standard data transmission code consisting of seven 
information bits, used to code 128 letters, numbers, and special 
characters. Many systems now use an 8-bit binary code, called 
ASCII-8, in which 256 symbols are represented (for example, 
IBM’s "extended ASCII"). 

Asymmetrical 
(non-reciprocal) 
Response

Term used to describe the comparative shapes of the boost/cut 
curves for variable equalizers. The cut curves do not mirror the 
boost curves, but instead are quite narrow, intended to act as 
notch filters. 

Asynchronous A transmission process where the signal is transmitted without 
any fixed timing relationship between one word and the next 
(and the timing relationship is recovered from the data stream). 

B

Bandpass Filter A filter that has a finite passband, neither of the cutoff 
frequencies being zero or infinite. The bandpass frequencies 
are normally associated with frequencies that define the half 
power points, i.e., the -3 dB points. 

Band-Limiting 
Filters

A low-pass and a high-pass filter in series, acting together to 
restrict (limit) the overall bandwidth of a system. 
User’s Manual 9-454 V 1.2, 2000-01



 Glossary
Bandwidth 
Abbreviation. BW

The numerical difference between the upper and lower -3 dB 
points of a band of audio frequencies. Used to figure the Q, or 
quality factor for a filter. 

Bilinear Transform A mathematical method used in the transformation of a 
continuous time (analog) function into an equivalent discrete 
time (digital) function. Fundamentally important for the design 
of digital filters. A bilinear transform ensures that a stable 
analog filter results in a stable digital filter, and it exactly 
preserves the frequency-domain characteristics, albeit with 
frequency compression. 

Bit Error Rate The number of bits processed before an erroneous bit is found 
(e.g. 10E13), or the frequency of erroneous bits (e.g. 10E-13). 

Bit Rate The rate or frequency at which bits appear in a bit stream. The 
bit rate of raw data from a CD, for example, is 4.3218 MHz. 

Bit Stream A binary signal without regard to grouping. 

Bit-Mapped 
Display

A display in which each pixel’s color and intensity data are 
stored in a separate memory location. 

Boost/Cut 
Equalizer

The most common graphic equalizer. Available with 10 to 31 
bands on octave to 1/3-octave spacing. The flat (0 dB) position 
locates all sliders at the center of the front panel. Comprised of 
bandpass filters, all controls start at their center 0 dB position 
and boost (amplify or make larger) signals by raising the 
sliders, or cut (attenuate or make smaller) the signal by 
lowering the sliders on a band-by-band basis. Commonly 
provide a center-detent feature identifying the 0 dB position. 
Proponents of boosting in permanent sound systems argue 
that cut-only use requires adding make-up gain which runs
the same risk of reducing system headroom as boosting. 

Buffer In data transmission, a temporary storage location for 
information being sent or received. 

Burst Error A large number of data bits lost on the medium because of 
excessive damage to or obstruction on the medium. 
User’s Manual 9-455 V 1.2, 2000-01



 Glossary
Bus One or more electrical conductors used for transmitting signals 
or power from one or more sources to one or more 
destinations. Often used to distinguish between a single 
computer system (connected together by a bus) and multi-
computer systems connected together by a network. 

C

Cartesian 
Coordinate 
System

1. A two-dimensional coordinate system in which the
coordinates of a point in a plane are its distances from two
perpendicular lines that intersect at an origin, the distance
from each line being measured along a straight line parallel
to the other.

2. A three-dimensional coordinate system in which the
coordinates of a point in space are its distances from each
of three perpendicular lines that intersect at an origin. After
the Latin form of Descartes, the mathematician who
invented it. 

Codec (Code-
Decode)

A device for converting voice signals from analog to digital for 
use in digital transmission schemes, normally telephone 
based, and then converting them back again. Most codecs 
employ proprietary coding algorithms for data compression, 
common examples being Dolby’s AC-2, ADPCM, and MPEG 
schemes. 

Compander A contraction of compressor-expander. A term referring to 
dynamic range reduction and expansion performed by first a 
compressor acting as an encoder, and second by an expander 
acting as the decoder. Normally used for noise reduction or 
headroom reasons. 

Complex 
Frequency 
Variable

An AC frequency in complex number form. 

Complex Number 
Mathematics

Any number of the form a + bj, where a and b are real numbers 
and j is an imaginary number whose square equals -1 and a 
represents the real part (e.g., the resistive effect of a filter, at 
zero phase angle) and b represents the imaginary part (e.g., 
the reactive effect, at 90 phase angle). 
User’s Manual 9-456 V 1.2, 2000-01



 Glossary
Compression 1. An increase in density and pressure in a medium, such as
air, caused by the passage of a sound wave.

2. The region in which this occurs. 

Compression 
Wave

A wave propagated by means of the compression of a fluid, 
such as a sound wave in air. 

Constant-Q 
Equalizer (also 
Constant-
Bandwidth)

Term applied to graphic and rotary equalizers describing 
bandwidth behavior as a function of boost/cut levels. Since Q 
and bandwidth are inverse sides of the same coin, the terms 
are fully interchangeable. The bandwidth remains constant for 
all boost/cut levels. For constant-Q designs, the skirts vary 
directly proportional to boost/cut amounts. Small boost/cut 
levels produce narrow skirts and large boost/cut levels produce 
wide skirts. 

Convolution A mathematical operation producing a function from a certain 
kind of summation or integral of two other functions. In the time 
domain, one function may be the input signal, and the other the 
impulse response. The convolution than yields the result of 
applying that input to a system with the given impulse 
response. In DSP, the convolution of a signal with FIR filter 
coefficients results in the filtering of that signal. 

Correlation A mathematical operation that indicates the degree to which 
two signals are alike. 

Crest Factor The term used to represent the ratio of the peak (crest) value 
to the RMS value of a waveform. 

Critical Band 
Physiology of 
Hearing

A range of frequencies that is integrated (summed together) by 
the neural system, equivalent to a bandpass filter (auditory 
filter) with approximately 10-20% bandwidth (approximately 
one-third octave wide).
[Although the latest research says critical bands are more like 
1/6-octave above 500 Hz, and about 100 Hz wide below 500
Hz]. The ear can be said to be a series of overlapping critical 
bands, each responding to a narrow range of frequencies. 
Introduced by Fletcher (1940) to deal with the masking of a 
pure-tone by wideband noise. 
User’s Manual 9-457 V 1.2, 2000-01



 Glossary
Cut-Only Equalizer Term used to describe graphic equalizers designed only for 
attenuation. (Also referred to as notch equalizers, or band-
reject equalizers). The flat (0 dB) position locates all sliders at 
the top of the front panel. Comprised only of notch filters 
(normally spaced at 1/3-octave intervals), all controls start at 0 
dB and reduce the signal on a band-by-band basis. Proponents 
of cut-only philosophy argue that boosting runs the risk of 
reducing system headroom. 

Cutoff Frequency 
Filters

The frequency at which the signal falls off by 3 dB (the half 
power point) from its maximum value. Also referred to as the -
3 dB points, or the corner frequencies. 

D

DAC (or D/A, 
Digital-to-Analog 
Converter)

The electronic component which converts digital words into 
analog signals that can then be amplified and used to drive 
loudspeakers, etc. The DAC is the last link in the digital chain 
of signal processing.

Decibel 
Abbreviation. dB

A unit used to express relative difference in power, intensity, 
voltage or other, between two acoustic or electric signals, equal 
to ten times (for power ratios - twenty times for all other ratios) 
the common logarithm of the ratio of the two levels. Equal to 
one-tenth of a bel. 

Delta Modulation A single-bit coding technique in which a constant step size 
digitizes the input waveform. Past knowledge of the information 
permits encoding only the differences between consecutive 
values.  
User’s Manual 9-458 V 1.2, 2000-01



 Glossary
Delta-Sigma 
Modulation (also 
Sigma-Delta)

An analog-to-digital conversion scheme rooted in a design 
originally proposed in 1946, but not made practical until 1974 
by James C. Candy. The name delta-sigma modulation was 
coined by Inose and Yasuda at the University of Tokyo in 1962, 
but due to a misunderstanding the words were interchanged 
and taken to be sigma-delta. Both names are still used for 
describing this modulator. Characterized by oversampling and 
digital filtering to achieve high performance at low cost, a delta-
sigma A/D thus consists of an analog modulator and a digital 
filter. The fundamental principle behind the modulator is that of 
a single-bit A/D converter embedded in an analog negative 
feedback loop with high open loop gain. The modulator loop 
oversamples and processes the analog input at a rate much 
higher than the bandwidth of interest. The modulator’s output 
provides 1-bit information at a very high rate and in a format 
that a digital filter can process to extract higher resolution (such 
as 20-bits) at a lower rate. 

Digital Audio Data 
Compression, 
commonly 
shortened to 
"Audio 
Compression."

Any of several algorithms designed to reduce the number of 
bits (hence, bandwidth and storage requirements) required for 
accurate digital audio storage and transmission. Characterized 
by being "lossless" or "lossy". The audio compression is "lossy" 
if actual data is lost due to the compression scheme, and 
"lossless" if it is not. Well designed algorithms ensure "lost" 
information is inaudible. 

Digital Audio The use of sampling and quantization techniques to store or 
transmit audio information in binary form. The use of numbers 
(typically binary) to represent audio signals. 

Digital Filter Any filter accomplished in the digital domain. 

Digital Signal Any signal which is quantized (i.e., limited to a distinct set of 
values) into digital words at discrete points in time. The 
accuracy of a digital value is dependent on the number of bits 
used to represent it. 

Digitization Any conversion of analog information into a digital form. 

Discrete Fourier 
Transform (DFT)

A DSP algorithm used to determine the fourier coefficient 
corresponding to a set of frequencies, normally linearly 
spaced. 
User’s Manual 9-459 V 1.2, 2000-01



 Glossary
DSP (Digital Signal 
Processing)

A technology for signal processing that combines algorithms 
and fast number-crunching digital hardware and is capable of 
high-performance and flexibility.

F

FFT (Fast Fourier 
Transform)

A DSP algorithm that is the computational equivalent to 
performing a specific number of discrete fourier transforms, but 
by taking advantage of computational symmetries and 
redundancies, significantly reduces the computational burden. 

FIR (Finite 
Impulse-
Response) Filter

A commonly used type of digital filter. Digitized samples of the 
audio signal serve as inputs and each filtered output is 
computed from a weighted sum of a finite number of previous 
inputs. An FIR filter can be designed to have completely linear 
phase (i.e., constant time delay, regardless of frequency). FIR 
filters designed for frequencies much lower than the sample 
rate and/or with sharp transitions are computationally intensive 
with large time delays. Popularly used for adaptive filters. 

Floating Point An encoding technique consisting of two parts: 
1. A mantissa representing a fractional value with magnitude

less than one
2. An exponent providing the position of the decimal point.

Floating point arithmetic allows the representation of very
large or very small numbers with fewer bits. 

Fourier Analysis 
Mathematics

The approximation of a function through the application of a 
Fourier Series to periodic data. 

Fourier Series Application of the Fourier theorem to a periodic function, 
resulting in sine and cosine terms which are harmonics of the 
periodic frequency. (After Baron Jean Baptiste Joseph 
Fourier.)

Fourier Theorem A mathematical theorem stating that any function may be 
resolved into sine and cosine terms with known amplitudes and 
phases. 
User’s Manual 9-460 V 1.2, 2000-01



 Glossary
Frequency 1. The property or condition of occurring at frequent intervals.
2. Mathematics. Physics. The number of times a specified

phenomenon occurs within a specified interval as
a)  The number of repetitions of a complete sequence of

values of a periodic function per unit variation of an
independent variable. 

b) The number of complete cycles of a periodic process
occurring per unit time. 

c) The number of repetitions per unit time of a complete
waveform, as of an electric current. 

G

Graphic Equalizer A multi-band variable equalizer using slide controls as the 
amplitude adjustable elements. Named for the positions of the 
sliders “graphing” the resulting frequency response of the 
equalizer. Only found on active designs. Center frequency and 
bandwidth are fixed for each band. 

H

Harmonic Series 1. Mathematics. A series whose terms are in harmonic
progression as 1 + 1/3 + 1/5 + 1/7 +... 

2. Music. A series of tones consisting of a fundamental tone
and the overtones produced by it and whose frequencies are
consecutive integral multiples of the frequency of the
fundamental. 

High-Pass Filter A filter having a passband extending from some finite cutoff 
frequency (not zero) up to infinite frequency. An infrasonic filter 
is a high-pass filter. 

I

IIR (Infinite 
Impulse-
Response) Filter

A commonly used type of digital filter. This recursive structure 
accepts as inputs digitized samples of the audio signal and 
then each output point is computed on the basis of a weighted 
sum of past output (feedback) terms, as well as past input 
values. An IIR filter is more efficient than its FIR counterpart, 
but poses more challenging design issues. Its strength is in not 
requiring as much DSP power as FIR, while its weakness is not 
having linear group delay and possible instabilities. 
User’s Manual 9-461 V 1.2, 2000-01



 Glossary
Interpolating 
Response

Term adopted by Rane Corporation to describe the summing 
response of adjacent bands of variable equalizers using 
buffered summing stages. If two adjacent bands, when 
summed together, produce a smooth response without a dip in 
the center, they are said to interpolate between the fixed center 
frequencies, or combine well.

Inverse Square 
Law Sound 
Pressure Level

Sound propagates in all directions to form a spherical field, thus 
sound energy is inversely proportional to the square of the 
distance, i.e., doubling the distance quarters the sound energy 
(the inverse square law), so SPL is attenuated 6dB for each 
doubling. 

Interleaving The process of rearranging data in time. Upon de-interleaving, 
errors in consecutive bits or words are distributed to a wider 
area to guard against consecutive errors in the storage media. 

L

Linear PCM A pulse code modulation system in which the signal is 
converted directly to a PCM word without companding, or other 
processing. 

Low-Pass Filter A filter having a passband extending from DC (zero Hz) to 
some finite cutoff frequency (not infinite). A filter with a 
characteristic that allows all frequencies below a specified 
rolloff frequency to pass and attenuate all frequencies above. 
Anti-aliasing and anti-imaging filters are low-pass filters. 

M

Minimum-Phase 
Filters

Electrical circuits from an electrical engineering viewpoint, the 
precise definition of a minimum-phase function is a detailed 
mathematical concept involving positive real transfer functions, 
i.e., transfer functions with all zeros restricted to the left half s-
plane (complex frequency plane using the Laplace transform 
operator s). This guarantees unconditional stability in the 
circuit. For example, all equalizer designs based on 2nd-order 
bandpass or band-reject networks have minimum-phase 
characteristics. 
User’s Manual 9-462 V 1.2, 2000-01



 Glossary
MIPS (Million 
Instructions 
Processed Per 
Second)

A measure of computing power. 

MLS (Maximum-
Length 
Sequences)

A time-domain-based analyzer using a mathematically 
designed test signal optimized for sound analysis. The test 
signal (a maximum-length sequence) is electronically 
generated and characterized by having a flat energy-vs-
frequency curve over a wide frequency range. Sounding similar 
to white noise, it is actually periodic, with a long repetition rate. 
Similar in principle to impulse response testing - think of the 
maximum-length sequence test signal as a series of randomly 
distributed positive- and negative-going impulses. 

N

Narrow-Band Filter Term popularized by equalizer pioneer C.P. Boner to describe 
his patented (tapped toroidal inductor) passive notch filters. 
Boner’s filters were very high Q (around 200) and extremely 
narrow (5 Hz at the -3 dB points). Boner used 100-150 of these 
sections in series to reduce feedback modes. Today’s usage 
extends this terminology to include all filters narrower than 1/3-
octave. This includes parametrics, notch filter sets, and certain 
cut-only variable equalizer designs. 

Noise Shaping A technique used in oversampling low-bit converters and other 
quantizers to shift (shape) the frequency range of quantizing 
error (noise and distortion). The output of a quantizer is fed 
back through a filter and summed with its input signal. Dither is 
sometimes used in the process. Oversampling A/D converters 
shift much of it out of the audio range completely. In this case, 
the in-band noise is decreased, which allows low-bit converters 
(such as delta-sigma) to equal or out-perform high-bit 
converters (those greater than 16 bits). When oversampling is 
not involved, the noise still appears to decrease by 12dB or
more because it is redistributed into less audible frequency 
areas. The benefits of this kind of noise shaping are usually 
reversed by further digital processing. 
User’s Manual 9-463 V 1.2, 2000-01



 Glossary
Nyquist Frequency The highest frequency that may be accurately sampled. The 
Nyquist frequency is one-half the sampling frequency. For 
example, the theoretical Nyquist Frequency of a CD system is 
22.05 kHz. 

O

Octave 1. Audio. The interval between any two frequencies having a
ratio of 2 to 1. 

2. Music 
a) The interval of eight diatonic degrees between two tones,

one of which has twice as many vibrations per second as
the other.

b) A tone that is eight full tones above or below another given
tone. 

c) An organ stop that produces tones an octave above those
usually produced by the keys played. 

One-Third Octave 1. Term referring to frequencies spaced every one-third of an
octave apart. One-third of an octave represents a frequency
1.26-times above a reference, or 0.794-times below the
same reference. The math goes like this: 1/3-octave = 2E1/
3 = 1.260 and the reciprocal, 1/1.260 = 0.794. Therefore, for
example, a frequency 1/3-octave above a 1kHz reference
equals 1.26kHz (which is rounded-off to the ANSI-ISO
preferred frequency of "1.25 kHz" for equalizers and
analyzers), while a frequency 1/3-octave below 1 kHz equals
794 Hz (labeled "800 Hz"). Mathematically it is significant to
note that, to a very close degree, 2E1/3 equals 10E1/10
(1.2599 vs. 1.2589). This bit of natural niceness allows the
same frequency divisions to be used to divide and mark an
octave into one-thirds and a decade into one-tenths. 

2. Term used to express the bandwidth of equalizers and other
filters that are 1/3-octave wide at their -3dB (half-power)
points.

3. Approximates the smallest region (bandwidth) humans
reliably detect change. Compare with third-octave.

Oversampling A technique where each sample from the converter is sampled 
more than once, i.e., oversampled. This multiplication of 
samples permits digital filtering of the signal, thus reducing the 
need for sharp analog filters to control aliasing. 
User’s Manual 9-464 V 1.2, 2000-01



 Glossary
P

Parametric 
Equalizer

A multi-band variable equalizer offering control of all the 
"parameters" of the internal bandpass filter sections. These 
parameters being amplitude, center frequency and bandwidth. 
This allows the user not only to control the amplitude of each 
band, but also to shift the center frequency and to widen or 
narrow the affected area. Available with rotary and slide 
controls. Subcategories of parametric equalizers exist which 
allow control of center frequency but not bandwidth. For rotary 
control units the most used term is quasi-parametric. For units 
with slide controls the popular term is paragraphic. The 
frequency control may be continuously variable or switch 
selectable in steps. Cut-only parametric equalizers (with 
adjustable bandwidth or not) are called notch equalizers or 
band-reject equalizers. 

Passive Equalizer A variable equalizer requiring no power to operate. Consisting 
only of passive components (inductors, capacitors and 
resistors) passive equalizers have no AC line cord. Favored for 
their low noise performance (no active components to generate 
noise), high dynamic range (no active power supplies to limit 
voltage swing), extremely good reliability (passive components 
rarely break), and lack of RFI interference (no semiconductors 
to detect radio frequencies). Disliked for their cost (inductors 
are expensive), size (and bulky), weight (and heavy), hum 
susceptibility (and need careful shielding) and signal loss 
characteristic (passive equalizers always reduce the signal). 
Also inductors saturate easily with large low frequency signals, 
causing distortion. Rarely seen today, but historically they were 
used primarily for notching in permanent sound systems.

PCM (Pulse Code 
Modulation)

A conversion method in which digital words in a bit stream 
represent samples of analog information. The basis of most 
digital audio systems. 

Peaking Response Term used to describe a bandpass shape when applied to 
program equalization. 
User’s Manual 9-465 V 1.2, 2000-01



 Glossary
Period 
Abbreviation T, t

1. The period of a periodic function is the smallest time interval
over which the function repeats itself. (For example, the
period of a sine wave is the amount of time T, it takes for the
waveform to pass through 360 degrees. Also, it is the
reciprocal of the frequency itself, i.e., T = 1/f.)

2. Mathematics. 
a) The least interval in the range of the independent variable

of a periodic function of a real variable in which all
possible values of the dependent variable are assumed.

b) A group of digits separated by commas in a written
number. 

c) The number of digits that repeat in a repeating decimal.
For example, 1/7 = 0.142857142857... has a six-digit
period. 

Phaser also called 
a "Phase Shifter,"

This is an electronic device creating an effect similar to 
flanging, but not as pronounced. Based on phase shift 
(frequency dependent), rather than true signal delay 
(frequency independent), the phaser is much easier and 
cheaper to construct. Using a relatively simple narrow notch 
filter (all-pass filters also were used) and sweeping it up and
down through some frequency range, then summing this 
output with the original input, creates the desired effect. Narrow 
notch filters are characterized by having sudden and rather 
extreme phase shifts just before and just after the deep notch. 
This generates the needed phase shifts for the ever-changing 
magnitude cancellations. 

Phase Shift The fraction of a complete cycle elapsed as measured from a 
specified reference point and expressed as an angle out of 
phase. In an un-synchronized or un-correlated way. 

Phase Delay A phase-shifted sine wave appears displaced in time from the 
input waveform. This displacement is called phase delay. 

Phasor 1. A complex number expressing the magnitude and phase of
a time-varying quantity. It is math shorthand for complex
numbers. Unless otherwise specified, it is used only within
the context of steady-state alternating linear systems.
(Example: 1.5 /27° is a phasor representing a vector with a
magnitude of 1.5 and a phase angle of 27 degrees.)

2. For some unknown reason, used a lot by Star Fleet
personnel. 
User’s Manual 9-466 V 1.2, 2000-01



 Glossary
Pink Noise Pink noise is a random noise source characterized by a flat 
amplitude response per octave band of frequency (or any 
constant percentage bandwidth), i.e., it has equal energy, or 
constant power, per octave. Pink noise is created by passing
white noise through a filter having a 3 dB/octave roll-off rate. 
See white noise discussion for details. Due to this roll-off, pink
noise sounds less bright and richer in low frequencies than 
white noise. Since pink noise has the same energy in each 
1/3-octave band, it is the preferred sound source for many 
acoustical measurements due to the critical band concept of 
human hearing. 

Polarity A signal’s electromechanical potential with respect to a 
reference potential. For example, if a loudspeaker cone moves
forward when a positive voltage is applied between its red and 
black terminals, then it is said to have a positive polarity. A
microphone has positive polarity if a positive pressure on its 
diaphragm results in a positive output voltage. 

Pre-Emphasis  A high-frequency boost used during recording, followed by de-
emphasis during playback, designed to improve signal-to-
noise performance. 

Proportional-Q 
Equalizer (also 
Variable-Q)

Term applied to graphic and rotary equalizers describing 
bandwidth behavior as a function of boost/cut levels. The term 
"proportional-Q" is preferred as being more accurate and less 
ambiguous than "variable-Q." If nothing else, "variable-Q" 
suggests the unit allows the user to vary (set) the Q, when no 
such controls exist. The bandwidth varies inversely 
proportional to boost (or cut) amounts, being very wide for 
small boost/cut levels and becoming very narrow for large 
boost/cut levels. The skirts, however, remain constant for all 
boost/cut levels. 

Psychoacoustics The scientific study of the perception of sound. 

PWM (Pulse Width 
Modulation)

A conversion method in which the widths of pulses in a pulse 
train represent the analog information. 

Q

Quantization Error Error resulting from quantizing an analog waveform to a 
discrete level. In general the longer the word length, the less 
the error. 
User’s Manual 9-467 V 1.2, 2000-01



 Glossary
Quantization The process of converting, or digitizing, the almost infinitely 
variable amplitude of an analog waveform to one of a finite 
series of discrete levels. Performed by the A/D converter. 

R

Real-Time 
Operation

What is perceived to be instantaneous to a user (or more 
technically, processing which completes in a specific time 
allotment). 

Reconstruction 
Filter

A low-pass filter used at the output of digital audio processors 
(following the DAC) to remove (or at least greatly attenuate) 
any aliasing products (image spectra present at multiples of the 
sampling frequency) produced by the use of real-world (non-
brickwall) input filters. 

Recursive A data structure that is defined in terms of itself. For example, 
in mathematics, an expression, such as a polynomial, each 
term of which is determined by application of a formula to 
preceding terms. Pertaining to a process that is defined or 
generated in terms of itself, i.e., its immediate past history. 

Rotary Equalizer A multi-band variable equalizer using rotary controls as the 
amplitude adjustable elements. Both active and passive 
designs exist with rotary controls. Center frequency and 
bandwidth are fixed for each band. 

S

Sample Rate 
Conversion

The process of converting one sample rate to another, e.g. 
44.1kHz to 48kHz. Necessary for the communication and 
synchronization of dissimilar digital audio devices, e.g., digital 
tape machines to CD mastering machines.

Sample-and-Hold 
(S/H)

A circuit which captures and holds an analog signal for a finite 
period of time. The input S/H proceeds the A/D converter, 
allowing time for conversion. The output S/H follows the D/A 
converter, smoothing glitches. 

Sampling 
(Nyquist)Theorem

A theorem stating that a bandlimited continuous waveform may 
be represented by a series of discrete samples if the sampling 
frequency is at least twice the highest frequency contained in 
the waveform. 
User’s Manual 9-468 V 1.2, 2000-01



 Glossary
Sampling 
Frequency or 
Sampling Rate

The frequency or rate at which an analog signal is sampled or 
converted into digital data. Expressed in Hertz (cycles per 
second). For example, compact disc sampling rate is 44,100 
samples per second or 44.1kHz, however in pro audio other 
rates exist, common examples being 32kHz, 48kHz and 
50kHz. 

Sampling The process of representing the amplitude of a signal at a 
particular point in time. 

S/N ratio (Signal-
to-Noise ratio)

The ratio of signal level (or power) to noise level (or power), 
normally expressed in decibels. 

T

Third-Octave Term referring to frequencies spaced every three octaves 
apart. For example, the third-octave above 1kHz is 8kHz. 
Commonly misused to mean one-third octave. While it can be 
argued that "third" can also mean one of three equal parts and 
as such might be used to correctly describe one part of an 
octave spit into three equal parts, it is potentially too confusing.
The preferred term is one-third octave. 

Transversal 
Equalizer

A multi-band variable equalizer using a tapped audio delay line 
as the frequency selective element, as opposed to bandpass 
filters built from inductors (real or synthetic) and capacitors. 
The term "transversal filter" does not mean "digital filter". It is 
the entire family of filter functions done by means of a tapped 
delay line. There exists a class of digital filters realized as 
transversal filters, using a shift register rather than an analog 
delay line, with the inputs being numbers rather than analog 
functions. 

W

Wavelength 
Symbol (Greek 
lower-case 
Lambda)

The distance between one peak or crest of a sine wave and the 
next corresponding peak or crest. The wavelength of any 
frequency may be found by dividing the speed of sound by the 
frequency.
User’s Manual 9-469 V 1.2, 2000-01



 Glossary
White Noise Analogous to white light containing equal amounts of all visible 
frequencies, white noise contains equal amounts of all audible 
frequencies (technically the bandwidth of noise is infinite, but 
for audio purposes it is limited to just the audio frequencies). 
From an energy standpoint white noise has constant power per 
hertz (also referred to as unit bandwidth), i.e., at every 
frequency there is the same amount of power (while pink noise, 
for instance, has constant power per octave band of 
frequency). A plot of white noise power vs. frequency is flat if 
the measuring device uses the same width filter for all 
measurements. This is known as a fixed bandwidth filter. For 
instance, a fixed bandwidth of 5 Hz is common, i.e., the test 
equipment measures the amplitude at each frequency using a 
filter that is 5 Hz wide. It is 5 Hz wide when measuring 50 Hz or 
2 kHz or 9.4 kHz, etc. A plot of white noise power vs. frequency 
change is not flat if the measuring device uses a variable width
filter. This is known as a fixed percentage bandwidth filter. A 
common example of which is 1/3-octave wide, which equals a 
bandwidth of 23%. This means that for every frequency 
measured the bandwidth of the measuring filter changes to 
23% of that new center frequency. For example the measuring 
bandwidth at 100 Hz is 23 Hz wide, then changes to 230 Hz 
wide when measuring 1 kHz, and so on. Therefore the plot of 
noise power vs. frequency is not flat, but shows a 3 dB rise in 
amplitude per octave of frequency change. Due to this rising 
frequency characteristic, white noise sounds very bright and 
lacking in low frequencies.

Z

Z-Transform A mathematical method used to relate coefficients of a digital 
filter to its frequency response, and to evaluate stability of the 
filter. It is equivalent to the Laplace transform of sampled data 
and is the building block of digital filters. 
User’s Manual 9-470 V 1.2, 2000-01



"Microcontrollers" Template
for Technical Documentation

 

A
Adaptive Digital Filters 197

CplxDlms_4_16 214
CplxDlmsBlk_4_16 222
Dlms_2_16x32 229
Dlms_4_16 201
DlmsBlk_2_16x32 235
DlmsBlk_4_16 208

Applications 401
Equalizer 406
Hardware Setup for Applications 408
Oscillators 404
Spectrum Analyzer 401

Argand Diagram 32
Argument Conventions 29

aR 30
CplxL 30
CplxS 30
cptrDataS 30
DataD 29
DataL 29
DataS 29
nH 29

B
Building DSPLIB 18

C
Canonical Form (Direct Form II) Second-order Section 174
Cascaded Biquad IIR Filter 175
Complex Arithmetic 32

Addition 32
Conjugate 33
Magnitude 33
Multiplication 32
Phase 33
Shift 33
Subtraction 32

Complex Arithmetic Functions 31
CplxAdd_16 36
CplxAdd_32 61
CplxAdds_16 38
User’s Manual 471 V 1.1, 2000-01



"Microcontrollers" Template
for Technical Documentation

 

CplxAdds_32 63
CplxConj_16 49
CplxConj_32 74
CplxMag_16 51
CplxMag_32 76
CplxMul_16 44
CplxMul_32 69
CplxMuls_16 46
CplxMuls_32 71
CplxPhase_16 54
CplxPhase_32 79
CplxShift_16 59
CplxShift_32 83
CplxSub_16 40
CplxSub_32 65
CplxSubs_16 42
CplxSubs_32 67

Complex Data Structure 35
ANSI C 35
GHS 35
Tasking 35

Complex Functions
CplxSub_16 40
CplxSubs_16 42

Complex Number Representation 31
Exponential form 31
Magnitude and angle form 31
Rectangular form 31
Trigonometric form 31

Complex Number Schematic 34
Complex Plane 31

D
Design of Test Cases for the FFT functions 256
Directory Structure 17, 430, 445, 446, 447
Discrete Cosine Transform

DCT_2_8 319
IDCT_2_8 324

Discrete Cosine Transform (DCT) 309
DSP Library Notations 23

F
Fast Fourier Transforms 241
User’s Manual 472 V 1.1, 2000-01



"Microcontrollers" Template
for Technical Documentation

 

FFT_2_16 261
FFT_2_16X32 293
FFT_2_32 277
FFTReal_2_16 269
FFTReal_2_16x32 301
FFTReal_2_32 285
IFFT_2_16 265
IFFT_2_16X32 297
IFFT_2_32 281
IFFTReal_2_16 273
IFFTReal_2_16X32 305
IFFTReal_2_32 289

Features 15
FIR Filters 106

Multirate Filters
FirDec_16 156
FirInter_16 165

Normal FIR 106
Fir_16 108
Fir_4_16 121
FirBlk_16 115
FirBlk_4_16 126

Symmetric FIR
FirSym_16 132
FirSym_4_16 142
FirSymBlk_16 137
FirSymBlk_4_16 148

Function Descriptions 29
Functional Implementation 250
Future of TriLib 16

I
IIR Filters 173

IirBiq_4_16 176
IirBiq_5_16 187
IirBiqBlk_4_16 182
IirBiqBlk_5_16 192

Implementation of FFT to Process the Real Sequences of Data 254
Installation and Build 17
Installing DSPLIB 18
Introduction 15
Inverse Discrete Cosine Transform (IDCT) 314
User’s Manual 473 V 1.1, 2000-01



"Microcontrollers" Template
for Technical Documentation

 

M
Mathematical Functions 329

AntiLn_16 348
Arctan_32 336
Cos_32 333
Expn_16 351
Ln_32 344
Rand_16 361
RandInit_16 360
Sine_32 330
Sqrt_32 340
XpowY_32 353

Matrix Operations 363
MatAdd_16 364
MatMult_16 371
MatSub_16 367
MatTrans_16 376

Memory Issues 24
Multidimensional DCT 315

O
Optimization Approach 24
Options in Library Configurations 26

R
Register Naming Conventions 30

a 30
ca 30

S
Source Files List 19
Statistical Functions 379

ACorr_16 381
Avg_16 397
Conv_16 389

Support Information 16

T
TriCore Implementation Note 248
TriLib Content 17
TriLib Data Types 23
TriLib Implementation - A Technical Note 24
User’s Manual 474 V 1.1, 2000-01



"Microcontrollers" Template
for Technical Documentation

 

V
Vector Arithmetic Functions 85

VecAdd 86
VecDotPro 92
VecMaxIdx 94
VecMaxVal 100
VecMinIdx 97
VecMinVal 103
VecSub 89
User’s Manual 475 V 1.1, 2000-01



"Microcontrollers" Template
for Technical Documentation

 

User’s Manual 476 V 1.1, 2000-01



((477))



h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly 
defined processes, which are both constantly under review and 
ultimately lead to good operating results.
Better operating results and business excellence mean less 
idleness and wastefulness for all of us, more professional 
success, more accurate information, a better overview and, 
thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher


	1 Introduction
	1.1 Introduction to TriLib, a DSP Library for TriCore
	1.2 Features
	1.3 Future of the TriLib
	1.4 Support Information

	2 Installation and Build
	2.1 TriLib Content
	2.2 Installing TriLib
	2.3 Building TriLib
	2.4 Source Files List

	3 DSP Library Notations
	3.1 TriLib Data Types
	3.2 Calling a DSP Library Function from C Code
	3.3 Calling a DSP Library Function from Assembly Code
	3.4 TriLib Example Implementation
	3.5 TriLib Implementation - A Technical Note
	3.5.1 Memory Issues
	3.5.2 Optimization Approach
	3.5.3 Options in Library Configurations
	3.5.4 Workarounds of known Behavioral Deviations
	3.5.5 Testing Methodology


	4 Function Descriptions
	4.1 Conventions
	4.1.1 Argument Conventions
	4.1.2 Register Naming Conventions

	4.2 Complex Arithmetic Functions
	4.2.1 Complex Numbers
	4.2.2 Complex Number Representation
	4.2.3 Complex Plane
	4.2.4 Complex Arithmetic
	4.2.5 Complex Number Schematic
	4.2.6 Complex Data Structure
	4.2.7 Descriptions

	4.3 Vector Arithmetic Functions
	4.3.1 Descriptions

	4.4 FIR Filters
	4.4.1 Normal FIR
	4.4.2 Symmetric FIR
	4.4.3 Multirate Filters

	4.5 IIR Filters
	4.5.1 Descriptions

	4.6 Adaptive Digital Filters
	4.6.1 Delayed LMS algorithm for an adaptive real FIR
	4.6.2 Delayed LMS algorithm for an adaptive Complex FIR
	4.6.3 Descriptions

	4.7 Fast Fourier Transforms
	4.7.1 Radix-2 Decimation-In-Time FFT Algorithm

	4.8 TriCore Implementation Note
	4.8.1 Organization of FFT functions
	4.8.2 16 Bit Implementation Modules
	4.8.3 16 bit Implementation for Mixed FFT
	4.8.4 32 Bit Implementation
	4.8.5 Functional Implementation
	4.8.6 Implementation of FFT to Process the Real Sequences of Data
	4.8.7 Design of Test Cases for the FFT functions
	4.8.8 Using FFT functions
	4.8.9 Description

	4.9 Discrete Cosine Transform (DCT)
	4.9.1 Algorithm

	4.10 Inverse Discrete Cosine Transform (IDCT)
	4.10.1 Algorithm

	4.11 Multidimensional DCT (General Information)
	4.11.1 Descriptions
	4.11.2 2D 8x8 Spatial Block DCT/IDCT Implementation

	4.12 Mathematical Functions
	4.12.1 Functions using Polynomial Approximation
	4.12.2 Random Number Generation

	4.13 Matrix Operations
	4.13.1 Descriptions

	4.14 Statistical Functions
	4.14.1 Descriptions


	5 Applications
	5.1 Spectrum Analyzer
	5.2 Sweep Oscillator
	5.3 Equalizer
	5.4 Hardware Setup for Applications
	5.4.1 Spectrum Analyzer
	5.4.2 Equalizer


	6 References
	7 Frequently Asked Questions
	7.1 FIR Basics
	7.1.1 FIR Properties
	7.1.2 FIR Design

	7.2 IIR Basics
	7.3 FFT
	7.3.1 FFT Basics
	7.3.2 FFT Terminology


	8 Appendix
	8.1 Introduction
	8.1.1 Scope of the Document

	8.2 File Organization
	8.2.1 File Extensions
	8.2.2 File Naming Conventions
	8.2.3 File Header and Guidelines

	8.3 Coding Rules and Conventions for 'C' and 'C++'
	8.3.1 File Organization
	8.3.2 Function Declaration
	8.3.3 Variable Declaration
	8.3.4 Comments

	8.4 Coding Rules and Conventions for Assembly Language
	8.4.1 File Organization
	8.4.2 General Coding Guidelines
	8.4.3 Function Organization
	8.4.4 Variables and Argument Convention
	8.4.5 Function Header and Guidelines

	8.5 Testing
	8.5.1 Test Methodology
	8.5.2 Convention

	8.6 Compiler Support
	8.6.1 General Common System
	8.6.2 Distinguishing Tasking, GHS and GNU Specific Directives
	8.6.3 Note on Implementation on Different Compilers


	9 Glossary



